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Abstract 

Signal detection is widely used in many applications.  Some examples include 

Cognitive Radio (CR) and military intelligence. CRs use signal detection to sense 

spectral occupancy. Without guaranteed signal detection, a CR cannot reliably perform 

its role. Similarly, signal detection is the first step for garnering an opponent’s 

information.  

Wireless signal detection can be performed using many different techniques.  Some 

of the most popular include matched filters, energy detectors (which use measurements 

such as the Power Spectral Density (PSD) of the signal), and Cyclostationary Feature 

Detectors (CFD) [1].  Among these techniques, CFD can be viewed as a compromise 

technique, in that it theoretically has better low Signal-to-Noise Ratio (SNR) detection 

performance than energy detectors and less strict requirements than matched filters.  

CFD uses the cyclostationarity of a signal to detect its presence. Signals that have 

cyclostationarity exhibit correlations between widely separated spectral components. 

Functions that describe this cyclostationarity include the Spectral Correlation Function 

(SCF). One advantage of cyclostationary approaches such as these is that Additive White 

Gaussian Noise (AWGN) is cancelled in these functions. This characteristic makes SCF 

outperform PSD under low SNR environments. 

However, whereas the PSD has been well investigated through empirical 

experiments, the SCF features under real world noise have not been. In this effort, the 

SCF features of modulated signals under real world channel noise are first identified and 
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characterized using the concept of path loss. Second, the performance of the SCF under a 

low SNR environment with real world signals is examined with real world signals and 

noise. Third, the dependence between observation time of the SCF calculation and the 

SCF feature statistics are identified with real world signals. Lastly, reasons for 

discrepancies between  the real-world and analytic / simulation based performance  are 

suggested. 

 
  



 

vi 

Acknowledgments 

 

This work is dedicated to my heavenly Father, God, and my family. I would like to 

express my sincere appreciation to my faculty advisor, Maj. Ryan W. Thomas, for his 

guidance and support throughout the course of this thesis effort.  

  

 
       Mujun Song 

 

 

 

 

 



 

vii 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments.............................................................................................................. vi 

Table of Contents .............................................................................................................. vii 

List of Figures .................................................................................................................... ix 

List of Tables ..................................................................................................................... xi 

I.  Introduction .....................................................................................................................1 

1.1 Background .........................................................................................................1 

1.2 Problem Statement / Goals ..................................................................................2 

1.3 Scope ...................................................................................................................3 

1.4 Approach .............................................................................................................4 

1.5 Organization ........................................................................................................5 

II. Literature Review ............................................................................................................6 

2.1 Chapter Overview ...............................................................................................6 

2.2 Spectral Correlation Function (SCF) ..................................................................7 

2.3 Detection Techniques ........................................................................................17 

2.4 Channel Noise Analysis ....................................................................................24 

2.5 Discussions ........................................................................................................29 

III. Methodology ................................................................................................................33 

3.1 Introduction .......................................................................................................33 

3.2 Problem Definition ............................................................................................33 

3.3 System Boundaries ............................................................................................36 

3.4 System Services.................................................................................................37 



 

viii 

3.5 Workload ...........................................................................................................37 

3.6 Performance Metrics .........................................................................................39 

3.7 System Parameters ............................................................................................39 

3.8 Factors ...............................................................................................................41 

3.9 Evaluation Technique ........................................................................................46 

3.10 Test bed ..........................................................................................................46 

3.11 Design of Experiments (DOE) .......................................................................53 

3.12 Analysis..........................................................................................................54 

3.13 Summary ........................................................................................................54 

IV. Analysis and Results ....................................................................................................55 

4.1 Chapter Overview .............................................................................................55 

4.2 Results ...............................................................................................................55 

4.3 Summary ...........................................................................................................81 

V.  Conclusions and Recommendations ............................................................................82 

5.1 Overview ...........................................................................................................82 

5.2 Conclusions .......................................................................................................82 

5.3 Contributions .....................................................................................................83 

5.4 Future Work ......................................................................................................84 

Appendix A : Simulink model ...........................................................................................85 

Appendix B : Different computational approaches of SCF ...............................................87 

Bibliography ......................................................................................................................89 

Vita  ....................................................................................................................................94 



 

ix 

List of Figures 

Page 

Figure 1. Theoretical SCF magnitude surfaces for BPSK, QPSK, SQPSK with carrier 

frequency f0 =3.3/T0 [15] .......................................................................................... 13 

Figure 2. Theoretical Spectral correlation magnitude for 4-FSK signal with 

0 0{( ) } {5,6,7,8}mf f T+ =  [15] ................................................................................... 15 

Figure 3 . SCF and PSD of BPSK..................................................................................... 16 

Figure 4. Two approaches of Energy detection. [21] ........................................................ 19 

Figure 5. Implementation of a cyclostationary feature detection [20] .............................. 23 

Figure 6. Noise in the wireless channel [30] ..................................................................... 24 

Figure 7. Multiplicative noise components in real world : Path loss, Shadowing, 

Multipath .................................................................................................................... 26 

Figure 8. SCF of BPSK under different SNR/observation time compared with PSD [7] 30 

Figure 9. System Under Test (SUT) ................................................................................. 36 

Figure 10. Estimating the received signal power under SNR < 0 (dB) ............................ 44 

Figure 11. Test bed for experiments ................................................................................. 46 

Figure 12. Simulink block model...................................................................................... 49 

Figure 13. Frequency offset in USRP2 ............................................................................. 50 

Figure 14. dB offset in USRP2 and Spectrum analyzer.................................................... 51 

Figure 15. Anechoic chamber ........................................................................................... 57 

Figure 16. Hallway............................................................................................................ 59 

Figure 17. Auditorium ...................................................................................................... 61 



 

x 

Figure 18. ANiMaL Lab ................................................................................................... 63 

Figure 19. Hallway without LOS ...................................................................................... 66 

Figure 20. In between buildings........................................................................................ 68 

Figure 21. Next to building without LOS ......................................................................... 70 

Figure 22. Parking lot ....................................................................................................... 72 

Figure 23. SCF vs. PSD with varying SNR and observation time ................................... 75 

Figure 24. SCF of 2-FSK on different observation time .................................................. 77 

Figure 25. QQ Plot of AWGN and Real world noise ....................................................... 79 

Figure 26. SCF Distribution of AWGN and Real world noise ......................................... 80 

Figure 27. Simulink block sets.......................................................................................... 85 

Figure 28. SCFs of real 2-FSK, BPSK, and synthetic BPSK using different computational 

approaches. ................................................................................................................. 88 

 



 

xi 

List of Tables 

Page 

Table 1. Path Loss Exponents for different environment [32] .......................................... 28 

Table 2. Statistical Properties of Time Smoothed and Instantaneous PSD/SCF [12] ...... 30 

Table 3. Location Factor ................................................................................................... 43 

Table 4. Variance of SCF / PSD at each observation time in anechoic chamber ............. 58 

Table 5. Variance of SCF / PSD at each observation time at hallway.............................. 60 

Table 6. Variance of SCF / PSD at each observation time at Auditorium........................ 62 

Table 7. Variance of SCF / PSD at each observation time at ANiMaL Lab .................... 64 

Table 8. Variance of SCF / PSD at each observation time at Hallway without LOS ....... 67 

Table 9. Variance of SCF / PSD at each observation time at between buildings ............. 69 

Table 10. Variance of SCF / PSD at each observation time next to building ................... 71 

Table 11. Variance of SCF / PSD at each observation time at Parking Lot ..................... 73 

Table 12. Path loss exponents in each locations / path loss exponent differences to 

anechoic chamber / variance ...................................................................................... 73 

Table 13. Variance ratios of theoretical and experimental { ( )}x cre S kα
+  ........................... 78 



 

1 

 
 

CHARACTERIZING CYCLOSTATIONARY FEATURES OF DIGITAL 
MODULATED SIGNALS WITH EMPIRICAL MEASUREMENTS USING 

SPECTRAL CORRELATION FUNCTION 
 

I.  Introduction 

1.1 Background 

Signal detection is widely used in many applications. Some examples include 

cognitive radio and military intelligence. Cognitive radios (CRs) are radios that are 

“aware of [their] surroundings and adapt intelligently” [2]. The term “surroundings” most 

often refers to other users of spectrum. When performing Dynamic Spectrum Access 

(DSA), a cognitive radio acts as a secondary user that has to detect and identify other 

radio users in order to not interfere. To accomplish this, CRs use signal detection to sense 

spectral occupancy. Without guaranteed signal detection, a CR cannot reliably perform 

its role.  

Similarly, signal detection also plays a key role in military intelligence. To know an 

opponent’s information in the battlefield is as critical as knowing an ally’s information. 

Signal detection is the first step for garnering an opponent’s information.  

Wireless signal detection can be performed using many different techniques. Some of 

the most popular include matched filters, energy detectors (which use measurements such 

as the Power Spectral Density (PSD) of the signal), and Cyclostationary Feature 

Detectors (CFD) [1]. Each of these techniques has advantages and disadvantages in terms 

of theoretical and real world performance.  
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Among these techniques, CFD can be viewed as a compromise technique, in that it 

theoretically has better low Signal-to-Noise Ratio (SNR) detection performance than 

energy detectors and less strict requirements than matched filters. Therefore the CFD is 

regarded as a promising technique for signal detection. 

CFD uses the cyclostationarity of a signal to detect its presence. Signals that have 

cyclostationarity exhibit correlations between widely separated spectral components. 

Functions that describe this cyclostationarity include the Spectral Correlation Function 

(SCF).  

One advantage of cyclostationary approaches such as the SCF is that Additive White 

Gaussian Noise (AWGN) is cancelled in these functions. This is because there is no 

correlation between the noise spectrum and the signal spectrum. In contrast, other 

approaches such as energy detection are not robust to noise that under low SNR signals 

are hidden under noise. This characteristic makes SCF outperform PSD under low SNR 

environments. 

1.2 Problem Statement / Goals 

PSD has been well investigated, with “log-normal shadowing” often used as a 

representative model of how PSD works under real-world noise. However, SCF features 

under real world noise have not been as well investigated under empirical experiments. 

That is, how the SCF works under real world noise has not been studied. 

The outperformance of the SCF under real world noise has not been shown under 

real-world conditions. Instead, it has been proven in analytic / simulation manner or with 

real experiments using AWGN (synthetic noise) as noise. But real world noise can be 
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different from AWGN, and there are other factors to consider such as path loss, 

shadowing, multipath fading, and interference [3]. 

In addition, under discrete, finite estimate of the cyclostationarity, there is 

dependence between its finite time parameter and SCF feature values, identified 

analytically in statistical view. It also has not been proven with real world signals. 

Therefore, the goals of this research are 

• To identify and characterize the SCF features of modulated signal under real 

world channel noise. 

• To examine the performance of the SCF under low SNR environment with real 

world signal. 

• To observe the correlation between finite time parameter of the SCF calculation 

and its feature values with real world signal 

1.3 Scope 

During this research, 2-Frequency Shift Keying (FSK) modulation is used with 20 

KS/s symbol rate at 2.45 GHz band. The signal is generated from signal generator, 

Agilent E4438C, ESG Vector Signal Generator. Universal Software Radio Peripheral 2 

(USRP2), which is a Software Defined Radio (SDR), is used as a receiver. The receiver 

samples the signal at 800 KS/s. Because of USRP2 hardware limitation (will be discussed 

later), only positive frequency band of received signal is considered. The receiver and the 

transmitter are static while taking measurements. Thus, Doppler effects are not 
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considered in the research. To get the cyclostationary features of the modulated signal, 

SCF is used, and implemented in Simulink. 

Analysis of path loss is based on the “log-normal shadowing” model for both indoor 

and outdoor experiments. Any other detailed path loss models are not considered. Curve 

fitting for measured data is performed using Least Squares curve fitting method which 

minimizes deviation from all data points. 

1.4 Approach 

According to the goals stated above, experimental approach was determined. 

To identify and characterize the SCF features of modulated signal under real world 

channel noise, we measure the path loss exponent of SCF and compare it to the path loss 

exponent of PSD. Experiments for path loss are performed by varying locations and 

distances. Resultant path loss for each location is analyzed in terms of path loss 

exponents and variance of feature magnitudes.  

To examine the performance of SCF under low SNR environment with real world 

signals, we obtain SCF features under different SNR levels with varying observation 

times. SNR levels range from -40dB to 20dB to examine its performance under low and 

high SNR environments. In addition, observation time is also varied to identify its effect 

on SNR performance. 

To observe the correlation between finite time parameter of SCF calculation and its 

feature values with real world signal, we investigate the dependence between observation 

time of SCF and variance of SCF feature values. The result will be compared to analytic 

result. 
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1.5 Organization  

The rest of this thesis is organized as follows: Chapter 2 covers a literature review of 

related work. An overview of cyclostationarity and SCF and its attributes are given with 

theoretical formula. Its applications and cyclostationary features of modulated signals are 

also discussed. After that, channel noise effects in the real world are introduced. Lastly, 

recent research on SCF, especially on SCF features under noise and its statistical 

characters, is introduced. Chapter 3 talks about methodology of how to define parameters 

of experiments and how to set up the physical experiment test bed including the 

transmitter, receiver and SCF analyzer and environment which affects the level of noise. 

SCF features of real world signals are compared with PSD features and theoretical SCF 

features in chapter 4. Chapter 5 restates the results of this research and explains 

contributions of this work. 
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II. Literature Review 

2.1 Chapter Overview 

Most signals of interest for detection are uniquely modulated. Examples include the 

communications signals that secondary user radios try to detect in dynamic spectrum 

access schemes and radar waveforms that are intercepted in the military. One aspect of 

these modulated signals that can be used for signal detection is a cyclostationary feature. 

One tool to detect cyclostationarity is Spectral Correlation Function (SCF), which can be 

thought of as a more generalized form of Power Spectral Density (PSD). The SCF is used 

in signal processing areas such as signal detection, parameter estimation, and signal 

classification [4] [5].  The reason why it is used is that it is robust to noise and has 

different unique feature sets for different modulations.  

Signals are transmitted using spectrum as a medium in wireless communication. 

However spectrum is not a “clean” medium, which means that it carries not only the 

signal of interest but also noise and interference. Also, there can be distorting effects such 

as shadowing and multipath. All of these make it difficult to detect signals. The SCF 

theoretically has better performance in noisy environments than PSD [6]; white Gaussian 

noise shows little spectral correlation within the noise, and modulated signal has its own 

spectral correlation feature within itself, which makes SCF more outstanding. However, 

there can still exist spectral correlation between the noise and the signal due to the limited 

sample sizes, which is called cross-SCF [4]. The effect of cross-SCF can be bigger if the 

noise is not truly white, making feature of the signal less visible because it is hidden by 

spectral correlation within the noise itself and between noise and the signal.   
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The remainder of this chapter is organized as follows: Section 2 will discuss what the 

cyclostationarity and SCF are, including properties of SCF and SCF feature of Frequency 

Shift Keying (FSK) modulated signal. Section 3 will introduce several detection 

techniques and provide some reasons why cyclostationary feature detection is better than 

other detection techniques. Noise components such as fading and interference, which 

hinder transmitting signal correctly, are introduced and some of them, such as AWGN 

and fading, are dealt with through looking into what have been done to understand how 

SCF is affected by them. 

2.2 Spectral Correlation Function (SCF) 

Cyclostationary features of signals are measured using SCF. That is, SCF is used to 

show cyclostationarity of signals. Therefore, before the SCF is investigated, 

cyclostationarity is introduced first.  

2.2.1     Cyclostationarity 

Stationary processes are processes whose mean and autocorrelation do not change as 

time changes. Cyclostationary processes, which have the property of “cyclostationarity,” 

are processes whose statistical parameters, mean and autocorrelation, show periodicity 

[8]. That is, its mean and autocorrelation change with periodicity as time varies. This 

periodicity is called second-order periodicity. Many stochastic processes generated by 

technical processes exhibit cyclostationarity. Examples include most modulated 

communication signals and vibration noise produced by rotating machines [8].  

Cyclostationarity is described mathematically as [9] : 
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0

0

( ) ( )
( , ) ( , )
x x

x x

M t T M t
R t T R tτ τ

+ =
+ =

                                                  (1) 

where *( , ) { ( / 2) ( / 2)}xR t E x t x tτ τ τ+ −  [6], ( )xM t is mean of process x(t) at time t and 

( , )xR t τ  is autocorrelation of process x(t) with time difference τ  and { }E   denotes the 

mathematical expectation operation. 0T  is a period [9]. 

2.2.2     Definition of Spectral Correlation Function (SCF) 

The SCF represents how much the spectral components of a process are correlated 

with other spectral components of the process. The SCF can be derived from Cyclic 

Autocorrelation Function (CAF). Before looking into SCF, we define the CAF to 

understand the concept of cycle frequency. 

As previously described, a cyclostationary process exhibits periodicity in its 

autocorrelation. If the autocorrelation of a process is periodic with , it indicates that 

the autocorrelation has its own frequency, called the cycle frequency (denoted by α ), 

which can be described as 0/m Tα =  where m is integer. Since it is periodic with 

frequency α , it can be described in Fourier series [9]. 

2( , ) ( ) i t
x xR t R eα πα

α

τ τ= ∑                                                   (2) 

where ( )xRα τ is the CAF of process x(t) with cycle frequency α , which is also the 

Fourier coefficients of the autocorrelation of process x(t).  Thus, the Fourier coefficients 

can be expressed as 

0T
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/2 2

/2

1( ) lim ( , )
T i t

x xTT
R R t e dt

T
α πατ τ −

−→∞ ∫                                       (3) 

for more than one periodicity [4][5]. In short, the CAF, ( )xRα τ , can be said to indicate the 

magnitude of the autocorrelation with τ  of  ( )x t  at a component cycle frequency α . In 

addition, an interesting thing is that if the cyclic autocorrelation is not periodic but 

constant (that is, α = 0) it is equal to simple autocorrelation, which means that cyclic 

autocorrelation includes autocorrelation. 

According to the Wiener relation, the Fourier transform of autocorrelation is identical 

to PSD. The Wiener relation can extend to cyclic autocorrelation, resulting in cyclic 

Wiener relation which embraces the 0α ≠  cases [10]. According to the cyclic Wiener 

relation, the Fourier transform of the CAF is equal to SCF, expressed as [11] 

2( ) ( ) i f
x xS f R e dα α π ττ τ

∞ −

−∞
= ∫                                               (4) 

Another derivation of SCF is from spectral cross-correlation. With special two 

complex-valued / 2α  frequency shifted veresion of process x(t), 

2 ( )
2

2 ( )
2

( ) ( )

( ) ( )

i t

i t

u t x t e

v t x t e

απ

απ

−

− −





                                                      (5) 

Cross-spectrum of the two process ( )u t , ( )v t  is defined to be spectral correlation function 

of ( )x t  as below. It is also called as cyclic spectrum [11]. 

( ) ( )uv xS f S fα
                                                           (6) 
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That is, ( )xS fα is the correlation of the two spectral components of ( )x t , at frequencies 

/ 2f α+  and / 2f α− . 

Considering a practical situation, in which the signal has finite-samples and is time-

variant, the T-windowed normalized time-variant finite-time Fourier transform is defined 

as [7] 

/2 2

/2

1( , ) ( )
t T i fu

T t T
X t f x u e du

T
π+ −

−∫
                                             (7) 

Therefore, T-windowed time-variant finite-time Fourier transforms of u(t) and v(t) are 

( , )TU t f , ( , )TV t f  and expressed as [11] 

( , ) ( , )
2

( , ) ( , )
2

T T

T T

U t f X t f

V t f X t f

α

α

= +

= −
                                                  

 (8) 

Using the Equation (8), the time-variant cross spectra correlation between u(t) and v(t) 

are defined in Equation (9). It turns out to be the time-variant cross spectra correlation 

between u(t) and v(t), which are / 2α  frequency shifted veresions of process x(t), equal 

to spectral correlation of x(t) between at / 2f α+  and at / 2f α−  at time t. The spectral 

correlation at time t is called instantaenous SCF, ( , )xS t fα . 

* *( , ) ( , ) ( , ) ( , ) ( , )
2 2uv T TS t f U t f V t f X t f X t fα α

= + − = ( , )xS t fα              (9) 

From the instantaneous SCF, an approximation of the SCF is derived by using time-

smoothed function  [12] 
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/2 *

/2,

1( ) lim ( , / 2) ( , / 2)
t

x T Ttt T
S f X t f X t f dt

t
α α α

∆

−∆∆ →∞
= + −

∆ ∫                    (10) 

where T  is window size of the time-variant finite-time Fourier transform, and t∆ is 

observation time. In short, the approximation of SCF is integrating the product of two 

spectral component at each time t within observation time t∆ . 

The SCF has been derived in two ways so far, resulting in Equation (4) and Equation 

(10) under continuous time. However, in the real world, discrete analysis is more 

practical rather than continuous analysis. To derive the discrete version of these 

functions, we begin with Equation (7). The discrete time-variant, finite-time Fourier 

transform is given by [7] 

1
2 /

0

1( , ) ( )
2

T
i fn T

T
n

TX t f x n t e
T

π
−

−

=

= + −∑                                   (11) 

The discrete version of time smoothed SCF in Equation (10) is provided as [12]  

/2
*

, /2

1( ) lim ( , / 2) ( , / 2)
t T

x T s T sT t n T
S f X nT f X nT f

t T
α α α

∆ −

∆ →∞
=

= + −
∆ − ∑                   (12) 

where sT  is sampling time. Also, the author in [12] suggested a unique time-smoothing 

technique for ease of statistical analysis, which avoids the correlation between previous 

and subsequent instantaneous SCF value: 



1
*

0
( , ) ( / 2, / 2) ( / 2, / 2)

t
T

x T s T s
n

TS t f X TnT T f X TnT T f
t

α α α

∆
−

=

= + + + −
∆ ∑

 

1

0
( / 2, )

t
T

x s
n

T S TnT T f
t

α

∆
−

=

= +
∆ ∑                                                                (13) 
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The time smoothing function in Equation (12) is called “Time-windowed” smoothing and 

the method in Equation (13) is called “time-stepped” smoothing in this research. And to 

satisfy the statistical reliability, / 1t T∆ >>  should be met [13] [14]. 

2.2.3     Properties of the SCF 

SCF describes a spectral characteristic that comes from cyclostationarity. A reason 

why the spectral correlation concept has been studied is that it has some properties which 

can be used in practical situation resulting in better performance compared to other 

methods of detecting such as PSD. 

One property is that the SCF of same modulation type with different number of 

possible symbols, such as Binary Phase Shift Keying (BPSK) and Quaternary PSK 

(QPSK), have different unique features.  This is in contrast to the PSD which has 

identical features on the same modulation type. This property helps to detect expected 

signal and classify signals according to modulation type. Graphically, four peaks are 

shown in Figure 1 and two of them are on the 0α =  axis and the other two of them are 

0f =  axis. Among the peaks, two peaks on  and 0f f= ± are considered as 

common peak which come up in other schemes where same modulation type (PSK in this 

example) is used with different number of symbols, such as QPSK, Staggered QPSK 

(SQPSK). This points out that the two peaks are no longer distinct features of BPSK 

signal. However, the other two peaks on 02 fα = ±  and 0f =  are distinct compared to 

other modulation schemes. Figure 1 below shows SCFs of BPSK, QPSK and SQPSK. All 

plots show similar peaks where , 0f f= ± . However, the other two peaks at 

0α =

0α =
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02 fα = ±  and 0f =  in BPSK signal does not show up in QPSK and SQPSK signal or the 

height of the peaks are comparatively different from the peaks in SQPSK.  

   

(a)  BPSK (b)  QPSK (c)  SQPSK 

Figure 1. Theoretical SCF magnitude surfaces for BPSK, QPSK, SQPSK with 

carrier frequency f0 =3.3/T0 [15] 

Another property is that stationary noise such as AWGN does not exhibit spectral 

correlation, because the spectral correlation comes from cyclostationarity which is special 

case of non-stationary process. Therefore, in the limit, the SCF of white noise is 

identically zero. 

In addition, the SCF has phase and frequency information associated with timing 

parameters, which makes it useful for synchronization. Lastly, the presence of a 

cyclostationary signal indicates that some parameters such as carrier frequency, symbol 

rate can be estimated using other spectral components such as cycle frequency [16] [17]. 

2.2.4     Features of modulated signal 

As said in the SCF property section above, each modulation type has distinct SCF 

features. The feature also varies with the number of possible symbols within same 

modulation type. We look into SCF feature of Frequency Shift Keying (FSK) modulation 
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with 2 possible symbols, which is a 2-FSK signal. We will use 2-FSK signals in this 

research since it has its own SCF feature which comes from only positive frequency band 

of signal [14] [18]. 

A phase incoherent FSK signal is represented mathematically as [15] 

0 0( ) ( ) cos(2 [ ( )] )n
n

s t q t nT f f n tπ θ
∞

=−∞

= − + +∑                               (14) 

where 
1

( ) ( )
M

m m
m

f n n fδ
=

= ∑  and 0f  is carrier frequency, ( )q t is rectangular pulse, 0T  is 

pulse duration, { }nθ is an independent sequence and it has uniform fraction-of-time 

distribution of the interval [-π , π], { ( )}f n  is stationary and has discrete M-ary fraction-

of-time distribution 1{ }M
mP , and ( )m nδ  is a vector which has one element equal to unity 

and the others equal to zero for each n [15]. SCF of M-ary FSK signal is given by [15] 

[19] 

*
0 0

10

*
0 0

0

1 [ ( / 2) ( / 2)
4

( )
( / 2) ( / 2)],

M

m m m
m

s

m m

P Q f f f Q f f f
T

S f
kQ f f f Q f f f
T

α

α α

α α α

=


+ + + + + −= 

+ − − + − − − =


∑
            (15) 

where ( )Q f  is Fourier transform of pulse ( )q t  for all integer k. Interesting thing is that, 

as can be seen in Equation (15), cycle frequency α where SCF features has non-zero 

value is not continuous, but discretely distributed with interval of 01/ T , the inverse of 

symbol duration, which is symbol rate [14]. It comes from the fact that the digital carrier 

modulation has a pulse train with period 0T  which is multiplied by carrier signal as can 
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be seen in Equation (14). Therefore, cycle frequency α , which is generated by the pulse 

train, has non-zero magnitudes only at 0/k Tα =  where k is integer and zero magnitude 

at 0/k Tα ≠ . In addition, distinct SCF peaks appear at 2 dkfα = ±  where k  is integer, df  

is frequency deviation which is a half of frequency separation between peaks [20]. 

The SCF feature of 4-FSK signal below is visually presented in frequency-cycle 

frequency plane (bi-frequency plane) in Figure 2.  

 
Figure 2. Theoretical Spectral correlation magnitude for 4-FSK signal with 

0 0{( ) } {5,6,7,8}mf f T+ =  [15] 

Figure 2 shows only positive frequency band and negative cycle frequency band of 

FSK signal with frequency sets 0 0{( ) } {5,6,7,8}mf f T+ = . Separation between peaks at 

0 mf f+  is two times the frequency deviation ( df ). That is, the separation between peaks 

is same with the symbol rate ( 01/ T ) and frequency deviation is same with half of the 

symbol rate in this example. The SCF features of 4-FSK in Figure 2 are shown to appear 

at 02 /dkf k Tα = ± = ± .  
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2.2.5     SCF vs. PSD 

As noticed in the Wiener relation and Cyclic Wiener relation, PSD is from Fourier 

transform of autocorrelation and SCF is from Fourier transform of  the CAF. 

Autocorrelation is special case of CAF when α = 0. Thus, it is intuitively assumed that 

PSD is special case of SCF when α = 0. As mentioned above, PSDs, that is, SCF at 

0α = , of BPSK, QPSK are same, whereas SCFs at α ≠ 0 have distinct features. In 

mathematical expression, from Equation (4) and (10), PSDs are derived as below. 

0;α =        0 0 2( ) ( ) i f
x xS f R e dπ ττ τ

∞ −

−∞
= ∫                                (16) 

0;α =        
/2 /2 20 *

/2 /2

1 1( ) ( , ) ( , ) ( , )
t t

x T T Tt t
S f X t f X t f dt X t f dt

t t
∆ ∆

−∆ −∆
= =

∆ ∆∫ ∫            (17) 

  

(a) SCF of BPSK (all α ) (b) PSD of BPSK ( 0α = ) 

Figure 3 . SCF and PSD of BPSK 

Figure 3 shows the relation between SCF and PSD. PSD on the right is a part of SCF 

when 0α = (red-rectangular in the left), which means that SCF is a generalization of 

PSD. 
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2.3 Detection Techniques 

As mentioned above, the SCF has practical properties that make the SCF more useful 

than PSD. Then what exactly makes the SCF better compared to other detection 

techniques? To answer to this question, three commonly studied and compared 

techniques are introduced and their advantages and limitations are discussed. 

2.3.1     Matched filter detection 

Matched filter is a technique for detecting the presence of a signal of a certain shape 

when assuming that noise is AWGN. Matched filter is the optimal way for signal 

detection, since it can turn low SNR into high SNR regime so that arbitrary weak signals 

can be detected [21]. To yield the highest SNR, matched filter controls the impulse 

response of its filter. To properly control the impulse response, matched filter detection 

requires a priori knowledge of signal, which means that the received signal is a 

deterministic signal to the receiver. A priori knowledge includes modulation type and 

order, pulse shaping, packet format, etc. However, since this a priori knowledge is mostly 

stored in detector’s memory, it is not a burdensome process.  

Another thing to care about is coherency. Coherency in matched filter designs can be 

achieved by timing and carrier synchronization, as well as channel equalization [1]. To 

keep a coherency with existing signal, matched filter detection uses pilots, preambles, 

synchronization words or spreading codes. TV signals which have a narrowband pilot for 

audio and video carriers and CDMA systems which have dedicated spreading codes for 
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pilot and synchronization channels are examples that can be used for overcoming the 

coherency problem [1].  

An advantage of a matched filter in addition to its optimal performance is that it 

requires O(1/SNR) samples to meet a target probability of error constraint [22]. The 

number of samples required is related to time performance. Thus, in the case of SNR<1, 

matched filter detection can give high processing gain with shorter time than other 

techniques, such as energy detectors (which requires O(1/SNR2) samples [22]). The time 

performance of matched filter is a lower bound on the sensing time for any possible 

sensing detector type [21]. 

The drawbacks of matched filters come from its characteristics. Since it requires a 

priori knowledge of the waveform and coherency with received signal, it is difficult to 

use in the real world.  Practically, this means that in the presence of channel distortion, 

the receiver must be matched to the convolution of a predetermined impulse response of a 

filter and the impulse response of a channel which generally can’t be identified [23]. 

Also, a significant disadvantage of matched filters is that they need a dedicated receiver 

for every different class of signals, which is not applicable to a radio which is expected to 

detect more than one signal such as cognitive radio because it has to have an ability to 

detect all the primary user classes.  

2.3.2     Energy detection (radiometer) 

Energy detection (also known as a radiometer) is non-coherent, which means it is 

simple to implement because it doesn’t require much information for coherent 
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processing. However it is a suboptimal technique because its performance is not useful in 

some environments, such as under low SNR.   

There are two main ways of performing energy detection.  A conventional energy 

detector consists of a low pass filter to filter out band noise and adjacent signals, Nyquist 

sampling A/D converter, square-law device and integrator, which is time domain 

representation of energy detection [21] [24].  A realization of this energy detector is 

illustrated in Figure 4(a). Another way of performing energy detection is by using a 

periodogram, which is frequency domain representation [24]. It is also depicted in Figure 

4(b). It estimates spectrum via squared magnitude of the FFT. In terms of result, both 

approaches don’t make any difference. However, in terms of utilization, the latter is 

typically preferred. That is, using pre-filter which should be matched to the bandwidth of 

the signal makes the time domain approach inflexible compared to the frequency domain 

approach because frequency domain approach provides the flexibility to process wider 

bandwidth and detect multiple signals at the same time if the signals have different center 

frequency, which enables to process arbitrary bandwidth of modulated signals [21] [24]. 

A/D (    )2 Average
N samples

Pre-filter
Signal(t)

 
(a) 

A/D K point FFT |  |2 Average M bins
N times

Signal(t)

 
(b) 

Figure 4. Two approaches of Energy detection. [21] 

There are some drawbacks of the energy detector in terms of susceptibility to noise 

and time performance. The energy detector is susceptible to noise especially in low SNR 
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environments. Because it is not able to differentiate signal from noise, the signal can be 

hidden below noise in a low SNR environment, which makes it unable to be detected. 

This drawback results in the lower SNR “wall”, which is minimum SNR level below 

which signals cannot be detected, than under other signal detectors. Therefore, the energy 

detector has good performance only above the SNR wall, and poor performance below it.  

In addition, under noise uncertainty, there can be a higher probability of false detection 

[21]. Also, it is susceptible to spread spectrum signals such as direct-sequence spread-

spectrum (DSSS) and frequency-hopped spread-spectrum (FHSS) modulation because 

DSSS has no identifiable spectral feature and FHSS modulated signal itself can be  

interference [1] [25]. 

Another disadvantage of the energy detection is that timing or phasing properties of 

signal of interest cannot be identified from energy detector, which is overcome by using 

more systems though [25]. In terms of  time performance, due to the non-coherent 

processing, O(1/SNR2) samples are needed to meet a probability of detection constraint, 

which indicates that, in the environment of SNR<1, the energy detector requires more 

samples to meet a probability of detection constraint compared to a matched filter which 

needs O(1/SNR) samples [1]. Thus, under a low SNR environment, a longer time to sense 

the signal is needed with an energy detector than with a matched filter, but it will be a 

shorter amount of time than CFDs (discussed next) [26]. 

2.3.3     Cyclostationary Feature Detection (CFD) 

From the properties of SCF discussed before, stationary noise exhibits no spectral 

correlation, which makes modulated signals that are severely masked by noise be more 



 

21 

effectively detected by CFD using SCF rather than energy detection using PSD [16]. 

Since matched filter detection is hard to achieve for general signal detection in real world 

environments, CFD is compared against energy detection. The reason why SCF is used 

for CFD rather than CAF is similar to talking about the difference between temporal 

analysis and spectral analysis. Spectral analysis enables CFD to view the received signal 

within certain range of frequency, not a whole frequency range, which is difficult in 

temporal view because plenty of signal components of frequencies are superimposed. 

One of the advantages of CFD is a high noise tolerance, which means that it has the 

ability to separate signal from noise. SCF which is used for CFD is described as at 

coordinates of frequency f  and cycle frequency α , whereas the energy detector has 

only frequency component f. The CFD uses signal features which are discretely 

distributed in the cycle frequency in the cyclic spectrum, already mentioned in Section 

2.2.4, even if continuous distribution is exhibited in the power spectrum. This indicates 

that overlapping features in the power spectrum of signals can have non-overlapping 

features in the cyclic spectrum, that is, SCF features are not overlapped due to its 

discretely distributed property [25]. This characteristic is applied to background noise 

which is assumed to have no cyclic feature at 0α ≠  and, therefore, is used to analyze 

signals at a nonzero cycle frequency where only a signal of interest feature which has 

cyclostationarity is expected to appear and the noise to disappear. Such analysis will 

expose the cyclostationary features of a signal without any other features caused by 

background noise except measurement noise [25]. Another advantage of CFD is that it is 
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able to identify modulation types by examining SCF features at 0α ≠  since these 

features often change with modulation type.  

In [1], the author insists that SCF has its unique features even under low SNR 

environments using AWGN as a noise. In high SNR environments (SNR > 1), when a 

signal strength is larger than noise strength, PSD and SCF show their unique features in 

bi-frequency plane as in Figure 3 (a). However, in low SNR environments (SNR < 1) 

when noise strength is larger than signal strength, PSD is hidden by noise and its unique 

feature is not visible. Thus, it is impossible for energy detector (which uses PSD) to know 

whether the signal exists of not. Whereas, SCF features when 0α ≠  is still visible 

regardless of noise strength. From the fact that PSD is a part of SCF when 0α = , the 

author says that, only when 0α = , large noise appears and hide a PSD feature of a signal 

and , in area when 0α ≠ , large noise does not appear  and SCF features of the signal is 

still visible without being buried under noise. Thus the CFD detects the target signal by 

inspecting not the SCF features in 0α =  region but SCF features in 0α ≠  region, 

because SCF features in 0α ≠  area are not buried by noise which has little spectral 

correlation.  Furthermore, by inspecting the locations and relative magnitudes of the 

peaks at 0α ≠ , the modulation type can also be identified. 

However, the CFD has a disadvantage in the computation aspect. It can be easily seen 

that the CFD using the SCF is more complex to calculate than energy detection because 

the PSD (which can be used in energy detection) is only one part of the SCF. In other 

words, the PSD can be represented using a 2-dimensional plot whereas the SCF requires 

a 3-dimensional plot (like Figure 3). The PSD only considers one parameter (frequency) 
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but SCF considers two parameters (frequency and cycle frequency) which give intuition 

that the SCF takes up more calculation than PSD.  

The computational complexity of SCF depends on the resolution of frequency f as 

PSD does. However, increment of the FFT resolution has larger effect on the 

computational complexity of SCF than that of PSD. Figure 5 below shows the 

computational process of the SCF. The detailed operation of N-point FFT and correlation 

is shown in the rectangle. In terms of complex multiplier, the number of multiplier in 

SCF scales as O(N2+NlogN) whereas that of energy detection scales as O(N), where N is 

the resolution of FFT [26] [20]. Note that this O(N) is computational performance, that is,  

the number of operations needed at certain samples, whereas O(1/SNR2) is time 

performance which is that how many samples are needed to meet certain detection 

performance under certain SNR level. 

A/D N point 
FFT

Correlate
X(f+a)X*(f-a) Average over T

Signal(t) Feature 
Detect

N FFT Z-1

X(k+m)

X(k-m)

m={-M/2,M/2}
Sx

α

 

Figure 5. Implementation of a cyclostationary feature detection [20] 

Even though a computation complexity problem exists for CFD, there are papers that 

try to mitigate the number of operations, making implementation of the CFD method to 

hardware for real time estimator practical. One technique is to only estimate the SCF on 
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the supported area where SCF has distinctive non-zero magnitude response [27] [28] 

[29]. This reduces the number of operations and makes real-time processing feasible. 

However, this paper assumes that the signal is digitally modulated and the detector 

already knows which part of SCF will have these distinctive features.  Locations of 

modulated signals that exhibit distinctive features are studied in detail in [15]. Location 

of features of BPSK signal is covered in Section 2.2.4. 

2.4 Channel Noise Analysis 

We have discussed the SCF’s definition, properties and its application to signal 

detection. However, in the real world, a signal is distorted by the noise, which means that 

noise can affect the cyclostationary feature of a real world signal.  

 

Figure 6. Noise in the wireless channel [30] 

Real world wireless channels are not so simple that they only have AWGN.  Noise 

that modifies the signal in either predictable or unpredictable way in the wireless channel 

can be divided into two types of noise: additive noise or multiplicative noise [30]. Figure 

6 describes noise in the wireless channel.  
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Additive noise is generated within the receiver itself, such as thermal noise, or from 

external sources like atmospheric effects, cosmic radiation and interference from other 

transmitters and electrical devices. Environmental noise and thermal noise from the 

receiver itself are mostly white noise with low strength and unavoidable, which spreads 

over whole frequency bands with almost same noise strength, preserving correlation 

structure. Other additive noise from artificial sources such as co-channel interference 

tends not to be white which can cause SCF change. 

Multiplicative noise is generated from diverse processes encountered by transmitted 

signal waves on their way to receiver, which means that it is involved in propagation 

processes of transmitted signal from transmitter to receiver. Reflection, absorption, 

scattering, diffraction and refraction are representative processes which occur during 

propagation and can be said to be causes of multiplicative noise. The multiplicative noise 

is further divided into three types of fading; path loss, shadowing (slow fading), and 

multipath fading (fast fading). Multiplicative noise appears to be time-varying and 

location varying processes making it hard to predict its effect [30].  

Figure 7 describes real world received signal and its multiplicative noise components. 

Figure 7. Multiplicative noise components in real world : Path loss, Shadowing, 

MultipathFigure 7 (a) describes received signal.  The signal is a resultant signal of going 

through all the multiplicative noise. Each of the other plots shows each multiplicative 

component effect.  
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(a) Total Signal (b) Path loss(distance dependant) 

  
(c) Shadowing (d) Multipath 

Figure 7. Multiplicative noise components in real world : Path loss, Shadowing, 

Multipath 

• Path loss (distance dependant) : Mostly refers to signal power loss from distance 

increase between transmitter and receiver. The path loss increases logarithmically as 

distance increases. The plot on the top right in Figure 7(a) describes path loss under the 

dB scale. 

• Shadowing (slow fading) : It is also referred to as a long term variation, large-

scale fading and generally caused by obstructions of the Line Of Sight (LOS) signal by 

buildings, mountains, etc [31]. Shadowing changes faster than path loss and has variation 

generally up to 20 dB [30]. The shadowing is illustrated in Figure 7 (c) on the bottom 

left. It is seen that the variation of amplitudes are slower than the right one, which is from 
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multipath fading discussed next. That’s why it is also known as “slow fading”. 

Diffraction is main loss components of shadowing.  

• Multipath (fast fading) : Also known as short term variations, or small scale 

fading. Multipath is caused when more than one version of the transmitted signal arrive at 

the receiver at slightly different times [32]. Each version of the transmitted signals act 

like interference and they can result in having destructive or constructive effect on the 

signal. This phenomenon is due to propagation processes such as reflection, diffraction, 

refraction and scattering [31]. And it often results in rapid variation of the amplitude of 

the transmitted signal over a short time or travel distance, which is the reason why it is 

called “small scale fading” [30]. The fast variation can be seen in Figure 7 (d) on the 

bottom right.  Two representative multipath models are Rayleigh fading and Rician 

fading. Rayleigh fading is to describe propagation in heavily built-up urban environments 

without LOS whereas Rician fading is utilized in environments where multipath occurs 

with a LOS path, that is, one version of signal is much stronger than others [33]. 

The basic stochastic path loss estimation model below, called “log-normal 

shadowing”, is provided to model the additive, multiplicative noise components built 

through empirical measurements [32]. That is, this model here considers not only 

distance dependent path loss but also effects of shadowing and multipath. 

0 10
0

( ) 10 log ( )dPL PL d n X
d σ= + +                                       (18) 
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where PL  is the average path loss in decibels, n is the path loss exponent which is the 

rate at which the path loss increases with distance increases, d0 is the close-in reference 

distance and d is the transmitter-receiver separation distance. Xσ  is a zero-mean 

Gaussian distributed random variable (in dB) with standard deviation σ  which also 

varies depending on environments [32]. This statistical distribution random variable is 

used to show unpredictable shadowing and multipath effects. 0( )PL d  is considered as a 

constant path loss factor at reference distance d0.  Parameter d stands for distance and the 

value of n is assigned different values depending on environment.  

Table 1 shows path loss exponent values for different environments. From Table 1 

and Equation (18), the fact that location (environment) and distance affect the path loss is 

easily noticed. Overall, the path loss exponent n and Xσ  indicate the level of multipath 

and shadowing. Distance is mainly involved in path loss. 

Table 1. Path Loss Exponents for different environment [32] 

Environment Path loss exponent, n 
In building line-of-sight 1.6 to 1.8 

Free space 2 
Obstructed in factories 2 to 3 

Urban area 2.7 to 3.5 
Shadowed urban area 3 to 5 
Obstructed in building 4 to 6 

 
The log-normal shadowing model is built based on empirical experiments using the 

PSD of the signal, showing the effects of noise on signal power. However, the PSD is 

used for energy detector which has been shown to have worse performance under those 
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multiplicative noise effects [34]. There has been no research on a SCF-based path model 

to identify the effects of noise like the PSD based log-normal shadowing model above. 

Therefore, the characteristics of SCF under path loss, shadowing, multipath need to be 

investigated by varying distance and locations.  

2.5 Discussions 

There has been a lot of research focused on analyzing the real world effect of noise on 

signal strength, especially multiplicative noise, by performing empirical experiments 

based on PSD. In [35], the author tried to analyze the RSS measurements statistically 

under shadowing and multipath in an indoor environment. He figured out the proper 

number of replication for measurement, determining that 40-replication seemed to be 

enough trials to convergence on a mean and standard deviation. He also compared 

theoretical second order statistics with the empirical ones, which are level crossing rate 

(LCR) and average fading duration (AFD), to show variations of RSS measurements in 

real world. Even though this paper is on signal strength which is based on PSD, 

methodologies used here can be applied to studying SCF based path loss effect such as 

determining the number of trials for statistical analysis. 

From an analytical perspective, in [12], the authors derived probability distribution of 

SCF and PSD analytically, showing that, under AWGN, the SCF of a signal which 

follows Gaussian distribution has better detection performance than PSD. In addition, 

they show that observation time affects the SCF feature values. As observation time 

increases, the SCF variance and mean of AWGN decrease. The decrease of the mean of 

AWGN makes the SCF feature distinct in low SNR environments. In the same context, 
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[7] showed that SCF floor gets  lower as the observation time gets longer by simulation, 

which indicates that SCF feature can be detected under lower SNR environment with 

longer observation time, shown in Figure 8.   

 

Figure 8. SCF of BPSK under different SNR/observation time compared with PSD [7] 

Table 2. Statistical Properties of Time Smoothed and Instantaneous PSD/SCF [12] 
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Table 2 above shows statistical properties of instantaneous / time smoothed PSD and 

SCF in [12]. The author used the time smoothing method described in Equation (13) in 

Section 2.2.2 to calculate the SCF. 

Sα  is SCF and S  is PSD. Instantaneous SCF and PSD has parameter t . x  denotes 

signal of interest with Fourier transform variance 2
xσ  and c  denotes AWGN with 

variance 2
cσ . 

There has been research on SCF under AWGN and multipath fading. In [36], the 

author used a “cyclostationary signature” which is a unique identifier or watermark 

intentionally embedded to signal and identified through SCF. He proved using simulation 

that the cyclostationary signature is sensitive to time variant Rayleigh multipath.  A 

method using multi-feature signatures was provided to overcome this sensitivity. On the 

other hand, [37] showed AWGN and multipath impacts on SCF through simulation. The 

signal detection performance of SCF under Rayleigh fading and AWGN is almost same 

with the performance under only AWGN except when SNR is below -15dB, which 

means the Rayleigh fading doesn’t have critical effect on SCF performance when the 

SNR is above the -15 dB. In [13], the authors proposed a method to improve CFD using 

the fact that SCF is robust to slow multipath fading, low SNR environments and is 

insensitive to unknown prior knowledge of received signal by simulation. 

Some papers have used real experiments to understand the SCF in a limited manner. 

In [38], the author presented the real world performance of CFD in the form of SCF 

through hardware implementation overcoming its hardware limitation such as sampling 

clock offset by partially coherent feature processing. The author tried to figure out the 
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performance of his CFD with experimental approach. But noise used in his research was 

synthetic stationary white noise, which does not fit our research goal. In addition, the 

author figured out that the CFD outperformed an energy detector under out of band 

interference using a real world signal.  

In addition, through empirical experiments, the author in [31] showed that under 

multipath fading with static and dynamic states the SCF still shows its cyclostationary 

features in the α ≠ 0 regions. However, under multipath fading with dynamic condition, 

SCF has a larger number of periodic components that are not multiples of a fundamental 

frequency, which indicates that the resultant signal can be considered as 

polycyclostationary [31]. In our research, dynamic states are not considered. These 

studies using real world experiments are not enough to characterize SCF features of 

modulated signals in real world. [38] more focuses on implementing SCF on hardware 

and figuring out its limitation and [31] more focuses on stationary analysis under 

multipath and shadowing effects. 

Even though there has been research on SCF under noise, they are limited in the 

aspects of its environments (AWGN, multipath fading), its evaluation technique (theory, 

simulation, real measurement) and its scope. Therefore, the characteristics of SCF with 

real world signal under channel noise need to be investigated in detail. 



 

33 

III. Methodology 

3.1 Introduction 

This chapter discusses the methodology of the research. To do this, the problem is 

introduced and the goal of the research is defined with expected result of the research. 

Next, a detailed methodology is discussed defining the system boundaries and their 

components, parameters and factors. Finally, the test bed is described and the 

experimental design and evaluation techniques are covered. 

3.2 Problem Definition 

3.2.1     Problem 

In Chapter 2, cyclostationarity and the SCF were introduced along with the 

properties, performance of SCF over PSD and different SCF features of some modulation 

types. The SCF features of a FSK signal were presented from a theoretical perspective. 

Furthermore, channel noise was introduced with recent research on the effects of additive 

/ multiplicative noise and interference on the SCF features from a theoretical, simulated 

and experimental perspective. 

Even though there has been research on effects of channel noise on the SCF, most of 

this has been done from the perspective of AWGN and multipath fading. In order to 

understand comprehensively the effect of additive and multiplicative noise on SCF under 

real world uncertainty, the properties of the SCF under real world channels needs to be 

investigated in detail. The investigation into the real-world effects of noise on the SCF 

features would help to validate the utility of cyclostationary feature based signal 
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detection. There has been no research on finding SCF feature characteristics in terms of 

the path loss model, varying distance and location, as done in PSD. Thus, it is meaningful 

to characterize the SCF feature using the “path loss" approach. In addition, the 

performance of SCF under low SNR environment, while analyzed theoretically, should 

be examined experimentally. Lastly, observation time has been shown to improve the 

SCF feature statistic components affecting the SCF feature levels of noise floor [7] [12], 

but a real world investigation into the observation time need to be performed to validate 

the argument.  

3.2.2     Goals and Hypothesis 

The goals of this research are 

• To identify and characterize the difference between the theoretical and actual 

cyclostationary features of modulated signals under channel noise in terms of path 

loss, shadowing and multipath under various locations and transmitter / receiver 

separations. 

• To determine the performance difference between SCF over PSD under low SNR 

environment with real world signal.  

• To observe the effect of observation time on the SCF statistics. 

It is expected that path loss model of the SCF will be similar to the PSD path loss 

model with lower noise floor because SCF comes from multiplying two frequency 

components which belong to PSD as well. The real world performance of SCF detection 

is not expected to be as good as theory since current noise model such as AWGN may be 

different from real world noise and there can be some unexpected correlations between 



 

35 

noise and signal, and among noise. Lastly, longer observation time is expected to 

decrease the variance of SCF feature and lower the noise floor level. 

3.2.3     Approach 

Equation (13) is used to obtain SCF feature values in experiments by giving particular  

α , f  values. To identify the SCF feature of modulated signal in a real world 

environment (including channel noise) and compare the feature response against theory, 

various configurations of real world environments will need to be designed to capture 

various noise conditions. Since these environmental conditions are not able to be 

controlled directly, they will be controlled indirectly by varying the transmitter / receiver 

location, separation distance and transmit power. This will affect the SNR as well as the 

channel noise, interference, multipath conditions and path loss. 

Specifically, the path loss of SCF features is measured by varying the transmitter / 

receiver separation distance in different locations. This helps to understand the effect of 

channel noise at fixed transmit power and fixed observation time. The resultant SCF path 

loss is compared to PSD path loss. To observe the SCF feature under low SNR, the SNR 

is changed by controlling the transmit signal strength. Performance of SCF under low 

SNR is compared with performance of the PSD. The observation time is varied by 

controlling time smoothing degree of SCF in signal processing part. SNR and observation 

time are varied at fixed distance and fixed location. Results of the experiments on the 

effect of SNR and observation time on SCF are compared with analytic, simulation-based 

results done previously in [7]. 
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3.3 System Boundaries 

SUT : Cyclostationary Feature Analyzing System
SCF Feature Value
At particular (α, f)
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Figure 9. System Under Test (SUT) 

The System Under Test (SUT) is a “Cyclostationary Feature Analyzing System” and 

it consists of a receiver and a channel which is a medium of the signal. The receiver of 

the system receives a signal transmitted through the channel and analyzes it using the 

SCF. The receiver includes a Software Defined Radio (SDR) which receives signal and a 

laptop which runs SCF codes to analyze the received signal using Simulink in MATLAB. 

The channel can be affected by additive / multiplicative noise such as interference, path 

loss, shadowing, multipath (other dynamic effects such as Doppler and hardware noise 
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are not considered). The Component Under Test (CUT) are the cyclostationary features 

of modulated signals in the channel. 

3.4 System Services 

The service the system provides is to analyze the cyclostationary features of the 

received signal using the SCF. Outcomes of system are SCF values of received signal at 

certain frequency f  and cycle frequency α  coordinates in 0α ≠  area. The outcome 

value would be used to determine the presence of expected signal in the channel if the 

system is used in signal detector. However, only the SCF value is the outcome in this 

system. 

3.5 Workload 

A workload is a request for system services, which means that the workload in this 

system is a particular configuration of transmitted signals in a channel.  In the research, 

the signal configuration is the set of components that define the signal, which includes 

modulation type, carrier frequency, symbol rate, power strength. These components 

affect the SCF feature values of the received signal. All other things that affect the feature 

value but are not part of the workloads (such as observation time) belong to system 

parameters. Specifically, the workload consists of: 

• Modulation type: The modulation type that we use for the research is 2-FSK, 

which has SCF features not only from spectral components at both positive and 

negative frequency band but also from spectral components only at either positive 

or negative frequency band FSK modulation requires an additional frequency 
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configuration component which is frequency deviation ( df ). The df  in our 

experiments is set to 20 KHz, which is same with symbol rate. 

• Carrier Frequency: 2.45GHz ± 50MHz Industrial, Scientific and Medical (ISM) 

band is used. The reason why the band is chosen is that common communication 

such as cellular phone, Wi-Fi and FM radio communication in military uses 

frequency bands higher than 500MHz and lower than 2.5GHz. Within this range 

there are two ISM bands (2.45GHz and 915MHz) and the 2.45GHz band is 

chosen and the carrier frequency is 2.45 GHz. 

• Symbol rate: Symbol rate should be determined considering the available 

bandwidth, because symbol rate is proportional to bandwidth. In practice, 

bandwidth is roughly 1.8 times as wide as symbol rate [39]. Available bandwidth 

is ±50 MHz in the 2.45GHz ISM band. In addition, available bandwidth of 

receiver is 25 MHz due to its decimation function. Then maximum symbol rate is 

13.89 MS/s ( ≈ 25 MHz / 1.8). Because taking the whole available bandwidth is 

not practical and causes much more possibility to be interfered and processing 

high bit rate can burden the processor, the symbol rate, 20 KS/s, is chosen to have 

much narrower bandwidth about 36 KHz. 

• Transmit power: Even though it is a component of the signal configurations, 

because transmit power is varied only to differentiate SNR, it is discussed in 

Section 3.8, which is discussed later. 
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3.6 Performance Metrics 

In all experiments, the time-smoothed SCF value at a particular position in the 

frequency-cycle frequency plane is measured. Equation (13) is used to obtain the ( , )f α  

position in the SCF. A magnitude peak should show up at particular position if the signal 

is present without any extenuating environmental conditions. The theoretical ( , )f α  

coordinates of the SCF feature for 2-FSK are used (discussed in Section 2.2.4), where 

c df f f= −  and 2 dfα = , where cf  is carrier frequency and df  is frequency deviation.  

3.7 System Parameters 

System parameters are parameters within the system boundary that affect the SCF 

feature values of the received signals. All parameters except configuration components of 

the transmitted modulated signal (which are workloads) belong to the system parameters. 

System parameters include channel noise components (such as path loss, shadowing, 

multipath, interference) and processing components at receiver (such as observation time, 

FFT resolution, sampling rate etc.).  

Detailed control of the channel noise is difficult to accomplish whereas control of the 

processing parameters can be directly manipulated. Controlling the channel noise 

components are difficult in real world. Because locations and distance reflect the degree 

of the noise effects such as path loss, multipath, shadowing, these are varied as can be 

seen in path loss model in Section 2.4. In other words the levels of path loss, shadowing, 

and multipath are assigned indirectly by the choice of transmitter and receiver location 

and separation. Interference is not controlled in the research, but significant interference 
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on the frequency band where the modulated signal is transmitted is prohibited by 

inspecting the band using PSD before the experiment. Significant interference in this 

research indicates the interference from external source which has stronger power than 

background noise. The location and distance are discussed later in Section 3.8, because 

they are varied during experiments. 

For processing components, FFT resolution and sampling rate are fixed, and 

observation time is varied. The fixed system parameters are given here. 

• FFT Resolution: The FFT resolution in Simulink tool (which is used in the 

experiment as a signal processor) is 512 samples. The USRP2 (discussed more in 

Section 3.10), which is the signal receiver, transmits a data frame of size 358 

samples to the Simulink signal processing block set. Simulink can only run FFTs 

with a resolution of power of 2. If the resolution is smaller than the number of 

samples of a frame, which is 358, the samples lose information of signal. 

However, if the resolution is greater than or equal to 358, it does not affect the 

information of the received signal. In the case of the resolution being greater than 

the number of samples, FFT performs zero-padding which does not decrease the 

information [40]. Therefore, resolutions greater than or equal to 512 are possible 

and the smallest one of them is chosen, which is 512, to avoid memory issues. 

Considering sampling rate and symbol rate which will be used in this research, 

12.8 symbols are expected to be covered by 512 samples.  

• Sampling rate: Sampling rate should be determined according to bandwidth 

available, obeying Nyquist theory not to cause aliasing issues. The bandwidth of 
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received signal depends on symbol rate of transmitted signal. Because the symbol 

rate is 20 KS/s, the bandwidth is about 36 KHz (= 1.8 ×  20K ). Considering 

frequency deviation, which is 20KHz, sampling rate should be greater than 112 

KHz (= (36K+ 20 K) ×  2) from Nyquist theory. And USRP2 basically samples 

signal at 100MS/s and decimates the samples by the decimation factor which 

ranges from 4 up to 512. In the research, decimation factor of 125 is selected 

resulting in sampling rate 800 KS/s (= 100M/s divided by 125), which easily 

satisfies the Nyquist requirement. 

3.8 Factors 

Factors are a subset of the system parameters and workloads that are varied during the 

experiments. In order to identify the difference between real world and theoretical SCF 

features, that is, in order to identify effects of real world transmit channel, we vary the 

levels of the transmitter / receiver separation distance as well as their locations.  This is 

because separation distance and location affects the path loss, shadowing, and multipath 

resulting in differentiating channel noise as can be seen in log-normal shadowing path 

loss model discussed in Section 2.4.2.  

The SNR is varied at the fixed distance and location to examine its better 

performance than PSD under low SNR environments from theoretical and simulation-

based researches.  

Lastly, the observation time is changed to verify how it affects the statistic 

components of SCF feature values, the mean and variance, compared with theoretical 

result [12] and to verify that the noise floor of SCF is lowered as the observation time 
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increases improving performance of SCF under low SNR environments [7]. Observation 

time means that how many samples are used to get one SCF value in signal analysis, thus 

the observation time is controlled by the number of samples, also can be said as time 

smoothing degree. The levels of each factor are varied as below. 

• Distance: A range of separation distance between transmitter and receiver is from 

30 cm to 1500 cm. Most research on path loss is categorized based on coverage. 

Common categories (or system types) include: satellite fixed links, terrestrial 

fixed links, mega-cells, macro-cells, micro-cells, and pico-cells [30]. Because the 

system types except pico-cells have much wider coverage than the coverage in 

our research, the pico-cell system can be most appropriate system for our 

research. However, because most pico-cell systems are characterized for indoor 

environments, our research (which uses outdoor as well as indoor locations) is not 

truly a pico-cell system. Even though our research is not fit for any types defined 

in [30], because signal detection using SCF under indoor and outdoor with close 

separation distance can be applied to various applications such as wireless sensor 

networks, the distances used in the research can be said to be meaningful.  

o 15 measurements points are chosen between 30 cm to 1500 cm. 

o Specific points for measurements are determined by evenly spacing the 

interval between measurement points in log-space. 

o Distance from the receiver to each measurement points are : 

30, 40, 52, 69, 92, 121, 160, 212, 281, 371, 491, 649, 858, 134, 1500 (cm) 
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A separation distance is fixed when experiments on SNR and observation time are 

being executed as 150 cm. 

• Location: 8 locations are chosen. As each type of environment has different path 

loss exponent n, the location factor here is varied corresponding to the 

environments in the Table 1 as Table 3 below. 

Table 3. Location Factor 

Environment Locations 

In-
door 

In building line-of-sight LOS Hallway, Auditorium (2 locations) 

Obstructed in factories non-
LOS ANiMaL lab (1 location) 

Obstructed in building non-
LOS Hall way (1 location) 

Out-
door 

Free space LOS Anechoic chamber, Parking lot 
(2 locations) 

Urban area LOS Between buildings in AFIT  
(1 location) 

Shadowed urban area non-
LOS Next to building (1 location) 

 
When experiments on SNR and observation time are being executed, the location 

used is Class room. 

• Transmit power: SNR at a fixed distance, constant fading and interference can be 

varied by the transmit power, which means that SNR is controlled by varying 

received signal power with fixed noise strength. Received signal power should be 

measured to get exact SNR. Transmit power is measured using power equation in 

[7], which is 
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2( )c b

c b

f f

PSD f f
P Y f df

+

−
= ∫                                      (19) 

where ( )y t is signal at center frequency cf  with bandwidth 2 bf . After transmit 

power and noise power are measured and calculated, SNR in dB scale is derived 

using  

10
( )( ) 10log ( ) ( )

( )
transmit

transmit noise
noise

Power mWattSNR dB Power dBm Power dBm
Power mWatt

 
= = − 

 
    (20) 

Meanwhile, measuring a signal power can be a problem where the signal 

power is less than or equal to noise power because the signal is hidden by noise. 

Thus, received signal power is measured indirectly in low SNR environment 

using the fact that the transmit power can be controlled through signal generator 

as shown in Figure 10. 

 

Figure 10. Estimating the received signal power under SNR < 0 (dB) 
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Initially, in high SNR environment, transmit power and received signal power 

are measured at particular distance and the difference between transmit power and 

received signal power is identified, for example, as k (dBm). Then, at the same 

distance and location, the received signal strength is easily estimated to be 

(transmit power – k). In this way, the signal power levels under noise power level 

are estimated. 

By doing this, SNR is varied from -40 dB to 25 dB and measurements are 

executed in every 2.5 dB increase in low SNR environment and in every 5 dB 

increase in high SNR environment (22 levels). 

However, the transmit power is varied only for identifying performance of 

SCF in low SNR environment. Thus, during other experiments, the signal power 

is fixed with -45 dBm strength in order to have both high and low SNR 

environments (SNR > 0 and SNR < 0 [dB]) within 15 m separation distance 

between transmitter and receiver. 

• Observation time: Observation time is indicated by the number of samples. The 

range of observation time is from 512 (= 512×1) samples to 2097152(= 512×

4096) samples. Experiments for identifying the effect of observation time are 

done with fixed location, fixed distance.  

o Observation time settings (7) : 512×1 , 512×4, 512×16 ,512×64, 512×256, 

512×1024, 512 4096 (samples) ×
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Observation time is also varied for path loss experiments and SNR experiments. For 

path loss experiments, observation time is varied to see whether there is an effect on path 

loss exponents or not. For SNR experiments, observation time is varied to see whether 

there is an effect on SNR level of noise floor, which is to be compared with Figure 8 in 

Section 2.5. 

3.9 Evaluation Technique 

Direct measurement is used as an evaluation technique in the research according to 

the goal of the research, which is to investigate the real world performance of SCF 

feature. 

Measurement technique can have low accuracy with unexpected uncontrolled 

environmental condition where there is such a strong interfering power signal that the 

signal affects the result. By inspecting a frequency band of interest through PSD, the 

chance that the results are not affected by particular signal interference is minimized.  

3.10 Test bed 

 

Figure 11. Test bed for experiments 
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The test bed consists of: 

• Transmitter  

An Agilent E4438C, ESG Vector Signal Generator is used. It generates 2-FSK 

signal with controllable symbol rate and transmit power. During the research, it 

generates 2-FSK signal with 20 KS/s symbol rate at 2.45 GHz carrier frequency 

varying the transmit power.  

• Receiver 

A Universal Software Radio Peripheral 2 (USRP2) is used as a receiver. The 

USRP2 is a Software Defined Radio (SDR) with capability to perform a limited 

number of high speed, high precision general purpose signal processing tasks such 

as decimation, interpolation, digital up conversion and down conversion. A Field 

Programmable Gate Array (FPGA) is utilized for providing high speed processing 

tasks in the USRP2. Other signal processing tasks suchs as modulation, 

demodulation, and filtering are performed on a host computer [41] [42].  

A daughterboard, the RFX 2400, which covers from 2.3 to 2.9 GHz frequency 

range, is used. In the experiments, USRP2 continuously receives a 2.45GHz 

signal at 100MS/s sampling rate and decimate the sampled signal with the 

decimation factor 125, resulting in 800 KS/s sampling rate. It also performs 

downconversion on the signal to the baseband in the end, making the signal 

centered at 0 Hz, which needs some adjustment on the sampled signal because 

down conversion makes the SCF features of modulated signal invisible. After 

sampling, decimating and downconverting the received signal, it sends the data to 
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a laptop via Gigabit Ethernet Cable in a frame, size of 358 samples. The 

transmitter and receiver are located at the height of 110 cm above the floor. 

• Laptop running Simulink 

A host computer connected to USRP2 is a laptop running Simulink in 

MATLAB, which receives transferred signal data in frame format, processes the 

data, shows / records the SCF values in real time. 

The laptop is a Dell Precision M4500 running Windows 7 Professional with 

Intel Core i7 processor, 8G RAM, 320G hard drive. Simulink in MATLAB 

R2010b running in the laptop provides USRP2-Simulnk block set which 

interfaces with USRP2 devices, allowing simulation and development work for 

SDR related work in real time. Simulink provides not only interface with USRP2, 

but also other signal processing blocks and embedded block which users can 

customize the function of block using MATLAB code. 

During the research, USRP2 Simulink block set receives data continuously 

from USRP2 and send the data to signal blocks and embedded blocks which 

analyzes the received data by calculating and recording the SCF values at the 

particular ( , )f α  position in real-time. 

• Simulink Block Setup 

The Simulink blocks in Figure 12 below describe how the data flows are 

analyzed. Figure 12 is an overall model of Simulink. A block at the left is USRP2 

receiver which masks a real USRP2 device and transmits samples in a frame of 

358 samples in complex value to SCF Analyzer. Through the USRP2 receiver 
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block, center frequency, gain, decimation factor and output data type are 

controlled. 

 

Figure 12. Simulink block model 

The received samples go through the hamming window, and then its instant 

SCF is calculated using Equation (9). The instant SCF is analyzed both at 

particular frequency value, set to center frequency of signal, which is for SCF and 

at particular alpha value set to 0, which is for PSD. 

The SCF values coming from the instant SCF are transferred to Time 

smoothing block which takes n sets of instantaneous SCF values and computes the 

mean of the n sets to get time-smoothed SCF values, which is characterized as a 

time smoothing degree, /t T∆  in Equation (13). The Time smoothing block 

outputs the time smoothed SCF values, plotting and recording them 

simultaneously.  

• Validation 

o Validation of USRP2 

The validation of correct working of USRP2 was done by comparing the PSD 

of the transmitted signal from USRP2 with that from spectrum analyzer. Two 
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things were investigated to validate the USRP2. First, a frequency offset was 

found in the USRP2, which occurs from USRP2 hardware itself estimated to be 

by thermal issue and to be different for each USRP2 and its decimation factor. 

This frequency offset was manually determined and manually compensated by 

specifying the center frequency as (desired center frequency – frequency offset). 

The frequency offset is shown below in Figure 13. 

  
Frequency offset by 7500Hz After the offset is fixed 

Figure 13. Frequency offset in USRP2 

One more validation of USRP2 is the dB offset between Simulink and 

spectrum analyzer. The dB offset was found to non-exist in USRP2. The 

background noise is approximately a little bit lower than -90dB and the signal is -

70 dB in both graphs in Figure 14. Width of the signal appeared to be same as 40 

KHz knowing that each X-axis tick in both graph takes 20 KHz. 
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USRP2 Spectrum Analyzer 

Figure 14. dB offset in USRP2 and Spectrum analyzer 

A limitation of USRP2 for the research was found, which constraints the 

selection of modulation types. Signal features of negative frequency band and 

positive frequency band are identical. It is due to Digital Down Conversion 

(DDC) process built in Field Programmable Gate Arrays (FPGA) in USRP2. It 

prevents the SCF analyzer from getting correct SCF features resulting from 

multiplying frequency component of signal in positive frequency band by 

frequency component of signal in negative frequency band. Most of SCF features 

of many modulation types have such SCF features. That is, as seen in Figure 1,  

distinct SCF features of BPSK, QPSK, SQPSK signal are from multiplying 

spectral components of positive and negative frequency band. However, in Figure 

2, some of distinct SCF features of 4-FSK signals are from multiplying spectral 

components only in one side of frequency band, because FSK modulation type 

has several distinct peaks only in one side of frequency band. Therefore, 2-FSK 

modulation type is chosen in the research, because 2-FSK signal is its own SCF 

features coming from only positive frequency band.  
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o Validation of computation 

The validation of SCF computation used is done by comparing different 

computation approaches using real 2-FSK, BPSK and synthetic BPSK signal. 

Instead of looking at values at particular frequency and cycle frequency, whole 

SCF of the signals are investigated through a bi-frequency plane. Because of 

USRP2 hardware limitation, only positive frequency band is analyzed.  

Computation approaches compared here can be divided to FFT based SCF (as 

shown in Equations (12) and (13)) and CAF based SCF (shown in Equation (4)). 

FFT based SCFs are further divided by time smoothing method, which are called 

time windowing and time stepped in this work. Time windowing is based on 

Equation (12) which takes T samples for every one time increment. Time stepped 

is based on Equation (13) which takes T samples for every T time increments.  

Appendix B shows that FFT based SCF features with time-stepped time 

smoothing method (Appendix B (a)) has most distinct features. CAF based SCF 

features are blurrier than SCF based features. Between FFT based SCF features, 

time-stepped smoothing method has more distinct features with 2-FSK signal. 

From SCF features of BPSK, 2-FSK signals, it is show that SCF of individual 

positive frequency band has no SCF features other than when 0α = , whereas 2-

FSK has its unique SCF feature with its individual positive frequency band. 

Therefore, FFT based SCF with time-stepped smoothing is used in this 

experiments with 2-FSK signal. 
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3.11 Design of Experiments (DOE) 

The experiment is to investigate SCF values at every configuration. The experiments 

are separated in three kinds of experiments. One is about changing environment - 

distance, location - which is done by full-factorial design. Another is about varying SNR 

levels and observation time with fixed distance and location. The last one is about 

observation time at a fixed distance and location. At least 30 replications are expected for 

a sufficient statistical basis for analysis [43]. Replication is done by one long 

measurement and dividing it to 40 sub- measurements based on regenerative simulation 

technique assuming all sub-measurements are independent and identically distributed 

[44].  

The first experiment varying distance and location needs minimum measurements of: 

15 (distance) ×  8 (location) ×  1 (fixed transmit power) ×   

3 (fixed observation time) ×  1 (40 replications) = 360 

Next, Observation time is varied at each SNR levels. It requires, at a minimum, 

measurements of: 

1 (fixed distance) ×  1 (fixed location) ×  22 (transmit power) ×   

4 (observation time) ×  1 (40 replications) = 88 

Lastly, observation time is varied to figure out effects of observation time on SCF 

features statistics 

1 (fixed distance)  1 (fixed location)  1 (transmit power)   

7 (observation time)  1 (40 replications) = 7 

 Therefore, a total of 455 measurements are required for the research. 

× × ×

×
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3.12 Analysis 

Given the results, analysis should be made to support the goals of the research.   

For path loss experiments, analysis of path loss is based on “Log-normal shadowing” 

model for both indoor and outdoor experiments. Measured SCF are compared with 

measured PSD and robustness to noise is investigated by looking at its path loss 

exponents and variance.  

For SNR and observation time experiments, measured SCF are compared with PSD 

in terms of noise floors by varying SNR. Noise floor which starts at lower SNR level can 

be said to be robust to noise. In addition, relation between observation time and noise 

tolerance is verified by looking at noise floors for each observation time.  

Curve fitting for measured data is performed using Least Squares curve fitting 

method which minimizes deviation from all data points. 

The effect of observation time is analyzed by looking at variance of SCF feature 

magnitude. Additionally, the variance of SCF feature is compared to the theoretic 

analysis of SCF.  

3.13 Summary 

This chapter talked about the system under test including component under test, 

services provided, system parameters and workloads. From the list of parameters and 

workloads, location, distance, signal power, observation times are the chosen factors. The 

performance metric is SCF value at a particular ( , )f α  coordinate where the distinct, 

highest peak exists in 0α ≠  area. The full factorial design was chosen using real world 

measurements as an evaluation technique.
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IV. Analysis and Results 

4.1 Chapter Overview 

The experiments are divided into the 3 separate parts described in Chapter III, 

including path loss analysis, SNR analysis, and observation time analysis. Results of path 

loss experiments are analyzed in Section 4.2.1 and results of SNR and observation 

experiments are analyzed in Section 4.2.2. In addition, the difference between synthetic 

AWGN and real world noise are statistically compared to complement the results. 

4.2 Results  

4.2.1     Path loss 

Path loss experiments are executed at 8 different locations (as outlined in Chapter 3), 

varying distance between transmitter and receiver from 30 cm to 15 m. The SCF and PSD 

are investigated at the same time to compare their path loss under same conditions. The 

magnitude of the PSD and SCF features in all locations as well as separation distances 

are presented in dB scale. To see the effects of noise, the path loss exponent (which is 

slope of the magnitude-distance dB plot) and variance of the features are analyzed.  

First, path loss trends are analyzed to see path loss exponents because path loss 

exponent reflects the effect of shadowing and multipath. In PSD, a path loss in dB 

domain is expected to increase linearly as distance in dB domain increases, which is same 

with linear decrease of signal strength magnitude in dB domain as distance in dB domain 

increases. And, at some point of distance, the signal strength stops decreasing and shows 

a steady state expected value (with certain strength from the distance as shown in [7]). 
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This behavior is also expected to happen with the SCF. The two states, which are the 

"path loss state" (decreasing value) and the "noise floor state" (steady value), are 

investigated by looking at the SCF / PSD feature value trends. Generally, transitions from 

the path loss state to noise floor happen smoothly as distances get longer. However, to 

analyze each state, the smooth trends are analyzed into one linear path loss trend and one 

constant noise floor trend. That is, each of the states is expected to have one straight line 

which reflects trend of each state. Path loss exponents are obtained from the slope of the 

linear path loss line. To fit measured data into the trend, Least Squares (LS) fit is used, as 

described in [7].  

Second, variances of the SCF / PSD measurements are obtained by averaging 

variances of measurements except the measurements on noise floor for every observation 

times and compared. The reason why variance of the SCF / PSD is investigated is that it 

reflects small fluctuations which are mainly due to multipath (fast fading). 

Additionally, during the experiments, observation times are varied in 3 different 

levels (512, 8192, 131072 samples) to see effects of observation time on path loss by 

looking at path loss exponents at each observation time. Path loss exponents at each 

observation time are presented with Root Mean Squared Error (RMSE) of the LS fit to 

capture whether the LS fit of path loss is comparatively accurate or not. For path loss 

plots, results at 8192-sample observation time are used. 

 4.2.1.1    Anechoic chamber 

The first location investigated is the anechoic chamber. The anechoic chamber is a 

room where reflection is minimized as well as external interference and noise. Thus, it 
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can be considered as a quiet open space. Since it has been designed to have the least 

amount of noise and reflections, results from this location will be thought of as the 

“standard” of the path loss experiments. That is, results from other locations will be 

compared to the results from this anechoic chamber not for comparing overall 

performance in certain area, but for comparing effects of noise such as multipath and 

shadowing. Due to the size of the anechoic chamber, 14 measurements are taken instead 

of 15 measurements. 

 
 

(a) SCF / PSD path loss 
 

  
(b) Fit curve slopes (c) RMSE 

Figure 15. Anechoic chamber 
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In the anechoic chamber, the SCF path loss exponent was smaller than the PSD path 

loss exponent by 0.43 as can be seen in Figure 15 (a). This could mean that in the 

environment like the anechoic chamber with almost no multipath and no shadowing, the 

SCF has more distinct features than the PSD. That is, the SCF features can be said to be 

more robust at the lower SNR induced by distance path loss than the PSD. Since 

multipath is minimized in this environment, this does not provide any evidence that the 

SCF is more robust to other noise effects such as multipath and shadowing. Figure 15 (b) 

and (c) showed that for every length of observation time, the SCF had a lower path loss 

exponent than the PSD. In terms of the effect of observation time on SCF / PSD, as 

observation time increased, the path loss exponents of the SCF and PSD tended to 

increase by only 0.3 and 0.2. In addition, the large RMSE of fit doesn't seem to support 

that these differences between each observation times are significant. 

The variance of the SCF is smaller than that of the PSD at every observation times as 

in Table 4. It can be said that without any multipath and shadowing the SCF showed less 

variance than the PSD. 

Table 4. Variance of SCF / PSD at each observation time in anechoic chamber 

Observation time SCF (dB) PSD (dB) 
512 samples -128.1335 -125.6733 
8192 samples -142.0570 -137.2534 

131072 samples -153.0965 -147.1524 
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4.2.1.2    Hallway 

The hallway can be thought of belonging to an indoor LOS environment with strong 

multipath components. Measurements were taken with a transmitter fixed and a receiver 

moving for each distance as in Figure 16 (d) and (e). 

 
(a) SCF / PSD path loss 

  
(b) Fit curve slopes (c) RMSE 

Office

Office

Office
Audi-

torium

TXRX

  
(d) Floor plan (e) Hall way 

Figure 16. Hallway 
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In a hallway with LOS, the SCF path loss exponent was smaller than the PSD path 

loss exponent by 0.06 in Figure 16 (a). But the SCF and the PSD showed similar 

performance, in terms of overall noise effects such as distance dependent path loss, 

multipath, shadowing, because the 0.06 difference in the path loss exponents is small 

when considering the large RMSE as in Figure 16 (c). However, when compared to the 

results of anechoic chamber, the path loss exponent of the SCF increased by 0.3 while the 

path loss exponent of the PSD decreased by only 0.07. This could mean that in the 

environment like the hallway with multipath, the SCF is not as robust to multipath as the 

PSD is. In addition, Figure 16 (b) doesn't show any significant changes in path loss 

exponents as observation time changes.  

The variance of the SCF was smaller than the PSD for every observation times, as 

shown in Table 5.  

Table 5. Variance of SCF / PSD at each observation time at hallway 

Observation time SCF (dB) PSD (dB) 
512 samples -116.383 -111.024 
8192 samples -128.861 -120.41 

131072 samples -140.969 -128.861 
 

 4.2.1.3    Auditorium 

The auditorium can also be thought of as an indoor LOS environment like the hallway 

above. The differences between them are the distances to walls and that there's no way of 

transmitted signal to get out. That is, every signal is reflected through walls surrounded 

until their strength weakens. It is expected that the longer distance from the receiver and 

transmitter to walls can reduce multipath effects, whereas the fact that all direction are 
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surrounded can result in more multipath effects. Results of the experiment are shown 

below in Figure 17. 

 
(a) SCF / PSD path loss 

 

  
(b) Fit curve slopes (c) RMSE 

 
(d) Auditorium 

Figure 17. Auditorium 



 

62 

In auditorium, the SCF path loss exponent was larger than the PSD path loss 

exponent by 0.46 in Figure 17 (a). Overall, the SCF showed worse performance than the 

PSD when simply comparing the path loss exponents of them. When compared to the 

SCF path loss exponents in anechoic chamber, the SCF path loss exponent increased by 

0.67 in the auditorium, while the PSD path loss exponent decreased by 0.22. This could 

indicate that, in the environments like the auditorium, SCF is not more robust to 

multipath and shadowing than PSD. Thus, it can be said that the SCF was more affected 

by multipath and shadowing than the PSD in this location. This higher path loss exponent 

kept same for every observation time. And, as same with previous results, observation 

time doesn't seem to have effects on path loss exponents because while varying 

observation time, the path loss exponents kept similar considering larger RMSE in Figure 

17 (b) and (c). The RMSE of observation time 131072 was not generated because the 

degree of freedom was too small to obtain it. 

From the Table 6, it is shown that the SCF variances at every observation time are 

smaller than the PSD, keeping the consistency as observation time varies. 

Table 6. Variance of SCF / PSD at each observation time at Auditorium 

Observation time SCF(dB) PSD(dB) 
512 samples -122.518 -118.239 
8192 samples -133.979 -129.586 

131072 samples -146.778 -132.147 
 

 4.2.1.4    ANiMaL Lab 

ANiMaL lab was chosen to model "obstructed in factories" environment as in Table 

3. LOS is not guaranteed as in Figure 18 (d). Between a receiver and a transmitter, there 
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are a thin wall and other obstructions such as desks. And up to a certain point of distance, 

an obstruction between transmitter and receiver is same, which is just a thin wall. But 

from the certain point of distance, obstructions between them increased, as seen in Figure 

18 (e). 

 
(a) SCF / PSD path loss 

  
(b) Fit curve slopes (c) RMSE 

  
(d) ANiMaL Lab (e) Floor Plan 

Figure 18. ANiMaL Lab 



 

64 

In the lab without LOS, the SCF path loss exponent was smaller than the PSD path 

loss exponent 0.26 as in Figure 18 (a). That is, overall, the SCF showed better 

performance than the PSD. When compared to the results of anechoic chamber, both the 

SCF and the PSD had smaller path loss exponent than those in anechoic chamber. The 

SCF decreased by 0.37 and the PSD decreased by 0.54. It is estimated that the reason 

why the path loss exponent decreased is that multipath has not only destructive effects 

but also constructive effects and, in the lab, the constructive effects affected more than 

the destructive effects. The PSD seems to have more constructive effects than the SCF. 

Thus, it could mean that in the environment like ANiMaL lab the SCF is more robust to 

multipath and shadowing effects because the PSD path loss exponent decreased more. 

From the Figure 18 (b), even though observation time doesn't seem to have effects on the 

path loss exponent as previous, smaller SCF path loss exponents are observed at every 

observation time (consistently).  

In the Table 7, variances of the SCF were smaller than the PSD for all observation 

times, still maintaining the consistency.  

Table 7. Variance of SCF / PSD at each observation time at ANiMaL Lab 

Observation time SCF(dB) PSD(dB) 
512 samples -118.861 -111.367 
8192 samples -131.805 -123.768 

131072 samples -143.768 -136.021 
 

In short, in the environment like the ANiMaL lab, both the SCF and the PSD seemed 

to have constructive multipath effects and the PSD was more affected by the effects 

based on the change of the path loss exponents when compared to the anechoic chamber 
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case. Variances at every observation time also support that the SCF had less multipath 

effects based on smaller variance, keeping consistency.  

 4.2.1.5    Hallway without LOS 

This environment was chosen to model "obstructed in building" environments. 

Obstructions here are thicker / denser obstructions than previous experiment at the lab. 

Because the LOS is not guaranteed, shadowing is expected to affect the path loss more 

than in LOS-guaranteed cases. But, there still are multipath effects as well. Difference of 

obstruction between this location and ANiMaL lab is how dense the obstructions are. In 

this case, the obstruction was a concrete wall which is dense, whereas in ANiMaL lab, 

the obstruction was a cubicle wall which is sparse. A transmitter and a receiver were set 

as Figure 19 (e) and the receiver moved as Figure 19 (d). 

In a hallway without LOS, the SCF path loss exponent was larger than the PSD path 

loss exponent by 0.16 in Figure 19 (a). That is, overall, the SCF showed a little worse 

performance than the PSD. When compared to the results of anechoic chamber, the SCF 

increased by 0.57 and the PSD decreased only by 0.02. The decrease of the PSD is 

negligible considering the large RSME in Figure 19 (c). This indicates that the SCF was 

more affected by multipath and shadowing than the PSD in this location. Figure 19 (b) 

shows that there were no significant path loss exponent changes as observation time 

changes. 
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 (a) SCF / PSD path loss 

  
(b) Fit curve slopes (c) RMSE 

Office

Office

Office
Audi-

torium

TX

RX

RX

 
 

(d) Floor plan (e) Hall way 

Figure 19. Hallway without LOS 
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In Table 8, variances of the SCF are smaller than that of the PSD at observation 

times, maintaining consistency of path loss exponent as observation time varies. 

Table 8. Variance of SCF / PSD at each observation time at Hallway without LOS 

Observation time SCF(dB) PSD(dB) 
512 samples -127.696 -125.376 
8192 samples -141.308 -137.696 

131072 samples -152.84 -144.202 
 

Experiments at indoor environments were considered so far. Indoor environments 

have more possibilities to have more multipath effects than outdoor environments, 

because signals can be reflected back to a receiver even though the signal wave already 

passed by. It can be good or bad for a receiver because such multipath can have 

constructive and destructive effects on received signal. 

From now on, experiments are executed in outdoor environments. Outdoor 

environments don't have ceilings that transmitted signal waves propagated towards 

upside are not reflected back to receiver. Only objects on path between or near a receiver 

and transmitter contribute to the noise effects. 

 4.2.1.6    In between buildings 

This place was chosen to model "urban area" with buildings around and LOS 

guaranteed. As seen in Figure 20 (d), there are buildings around a transmitter and a 

receiver. 
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(a) SCF / PSD path loss 

  
(b) Fit curve slopes (c) RMSE 

 
(d) Between building with LOS 

Figure 20. In between buildings 

In between buildings, the SCF path loss exponent was smaller than the PSD path loss 

exponent by 0.31 as in Figure 20 (a). That is, overall, the SCF showed better performance 
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by simply comparing the path loss exponent of the SCF and the PSD. When compared to 

the results of anechoic chamber, the path loss exponent of the SCF decreased by 0.55 and 

the PSD decreased 0.67. Constructive multipath effects also seem to take place in this 

environment because the path loss exponents decreased in both SCF and PSD. In the 

decreases, PSD showed a little more decrease than the SCF by 0.12, which indicates that 

the PSD was a little more affected by the constructive multipath effects. Observation time 

doesn't seem to affect the path loss exponents of SCF and PSD. The SCF maintains 

slightly smaller path loss exponents than the PSD for every observation times as in Figure 

20 (b). 

In Table 9, the variances of the SCF are smaller than that of the PSD for all 

observation times, keeping consistency with previous results. 

Table 9. Variance of SCF / PSD at each observation time at between buildings  

Observation time SCF(dB) PSD(dB) 
512 samples -128.861 -126.576 
8192 samples -143.372 -137.959 

131072 samples -154.437 -148.239 
 

 4.2.1.7    Next to a Building without LOS 

This place was chosen to model "shadowed urban area" with buildings around and 

LOS not guaranteed as in Figure 21(c). In this case, shadowing is expected to affect the 

path loss more than LOS guaranteed cases.  

At next to a building, the SCF path loss exponent was a little smaller than the PSD 

path loss exponent by 0.03 as in Figure 21 (a). That is, overall, the SCF and the PSD 

showed similar performance because the 0.03 difference in the path loss exponents is 
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small when considering large path loss exponents in Figure 21 (b). When compared to the 

results of anechoic chamber, the path loss exponent of the SCF increased by 3.01 and the 

PSD increased by 2.61. The SCF seems to have more noise effect than the PSD in this 

location. In Figure 21 (b), path loss exponents of the SCF and the PSD are not similar for 

all observation times. (inconsistency)  RMSE was not generated because degree of 

freedom was too small to obtain it. 

  
(a) SCF / PSD path loss (b) Fit curve slopes 

 
(c) Next to the building without LOS 

Figure 21. Next to building without LOS 

In the Table 10, it shows that, for every observation times, the SCF showed smaller 

variance than the PSD, keeping consistency with previous results. 
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Table 10. Variance of SCF / PSD at each observation time next to building 

Observation time SCF(dB) PSD(dB) 
512 samples -134.685 -131.079 
8192 samples -150 -144.949 

131072 samples -162.441 -155.686 
  

 4.2.1.8    Parking lot 

This place is close to "free space" with nothing around and LOS guaranteed as in 

Figure 22(d). In other words, this place is expected to have little multipath and shadowing 

effects compared to other environments above except the anechoic chamber. However, 

there still exist unexpected objects such as lights, trees and so on. And this place is not 

expected to have as little noise effects as the anechoic chamber. 

At parking lot, the SCF path loss exponent was smaller than the PSD path loss 

exponent by 0.55 as in Figure 22 (a). That is, overall, the SCF showed better performance 

than the PSD. When compared to the results of anechoic chamber, the path loss exponent 

of the SCF increased by 0.3 and the PSD increased by 0.42. And for every observation 

times, the SCF keeps less steep path loss exponents than the PSD as in Figure 22 (b). 
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(a) SCF / PSD path loss 

  
(b) Fit curve slopes (c) RMSE 

 
(d) Parking Lot 

Figure 22. Parking lot 

In the Table 11, it shows that, for all observation times, the PSD had smaller 

variances than the SCF, maintaining consistency with previous results. 
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Table 11. Variance of SCF / PSD at each observation time at Parking Lot 

Observation time SCF(dB) PSD(dB) 
512 samples -125.528 -124.559 
8192 samples -137.959 -136.778 

131072 samples -152.291 -151.308 
 

 4.2.1.9    Short Conclusions 

At 8 locations, measurements were taken varying distances in 15 levels. Path loss 

exponents of SCF / PSD path loss and variances of SCF / PSD feature values are 

investigated and overall results are shown in Table 12. 

Table 12. Path loss exponents in each locations / path loss exponent differences to 

anechoic chamber / variance 

 Anechoic 
chamber Hallway Auditorium Lab Hallway 

w/o LOS 
Between 
buildings 

Next to 
building 

Parking 
lot 

Path loss 
exponent 

SCF 1.56 1.86 2.23 1.19 2.13 1.01 4.57 1.86 

PSD 1.99 1.92 1.77 1.45 1.97 1.32 4.6 2.41 

Path loss 
exponent 
difference 

SCF · 0.3 0.67 -0.37 0.57 -0.55 3.01 0.3 

PSD · -0.07 -0.22 -0.54 -0.02 -0.67 2.61 0.42 

Smaller Variance SCF SCF SCF SCF SCF SCF SCF SCF 

Table 12 shows path loss exponents of the SCF / PSD path loss at each locations and 

path loss exponent differences between at anechoic chamber and at each location. Path 

loss exponents at each location may reflect performances of SCF / PSD at each location. 

Because the performance can be different from robustness to noise effects, therefore, path 

loss exponent differences are investigated, which possibly reflect the robustness to noise 

effects. 
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Positive values in the difference mean increase of path loss exponent and negative 

values mean decrease of path loss exponent. But, since we only look at magnitude of the 

differences as a result of noise effect, whether it is a positive value or a negative value 

doesn’t matter. Blue-colored cells in the table indicate smaller value when comparing 

between the values at the SCF and the PSD.  

At 5 out of 7 locations (except anechoic chamber), the SCF showed smaller path loss 

exponents which could indicate that, in these 5 places, the SCF showed better 

performance. However, in terms of robustness to noise effects, only at 3 places out of 7, 

the SCF showed smaller differences, which could indicate that more robustness to noise 

effects. That is, because the path loss exponent differences of the SCF are not 

consistently smaller than that of the PSD, it is hard to say that SCF is more robust to PSD 

in general. 

However, in terms of variance at each location, the SCF exhibited smaller values than 

the PSD consistently, which could indicate robustness of SCF to noise effects, especially 

multipath. 

4.2.2     SNR and Observation time 

In this section, the performance of SCF over PSD is verified against real world 

signals and background noise by varying the SNR for each observation time to compare 

against Figure 8 which showed that noise floor of SCF appear in lower SNR 

environments than that of PSD and as observation time gets longer, noise floor also 

appear in lower environments than the noise floor with shorter observation time. In 
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addition, by varying the observation time, its effect on the SCF feature is inspected and 

compared with the theoretical statistics discussed with Table 2 in Section 2.5. 

 4.2.2.1    SNR with observation time 

First, the SNR was varied by controlling the transmit power of signal. The receiver 

analyzed the collected signal in terms of the SCF and PSD. In addition, the observation 

time was varied in 4 different levels. Results of these experiments are compared to Figure 

8 which is generated by the simulation. Figure 23 below shows results of our experiments 

of varying SNR with different observation times.  

                                                                                                                                                                       
(a) SCF 

 
(b) PSD 

Figure 23. SCF vs. PSD with varying SNR and observation time 
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Figure 23 (a) shows SCF feature values of the experiments. For SNR > 0 dB, the 

feature value decreases linearly in dB scale as SNR goes to 0 dB. From a certain point of 

SNR, the feature values are almost the same values, showing no more decrease or 

increase in values, which is the noise floor. The trends of feature values seem to be same 

with the Figure 8 in the way that it has a linear decreasing line and a noise floor.  

However, in terms of observation time, it is shown that the observation time doesn't 

affect the position of starting point of SCF floor (green circles in the figure). That is, the 

noise floors of SCF features from every observation time start at almost same SNR level. 

This is different from what is seen in Figure 8, because, in Figure 8, as observation time 

gets longer, the starting point of the noise floor shows up at lower SNR levels. The 

observation time also decreases the SCF value both in high and low SNR environments. 

This result is also different from Figure 8 in Section 2.5, which showed the same SCF 

features for different observation time under high SNR environment. This even more 

surprising because the PSD feature in Figure 23 (b) shows the almost same starting point 

position of PSD floor with that of SCF floor starting point in Figure 23 (a). These results 

do not provide evidence that the show that the SCF outperforms the PSD. In conclusion, 

with real world signal and background noise, it appears that the SCF does not have better 

performance than the PSD and does not show a distinct feature in low SNR environment. 

Rather the features diminish as SNR gets lower. 

  4.2.2.2    Observation time 

In the previous Section 4.2.2.1, the effect of observation time was introduced under 

the factor of varying the SNR, which decreased both the magnitude of the SCF feature as 
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well as the magnitude of the SCF noise floor. The result was compared with the 

simulation based result of observation time.  

In addition, variance of SCF feature magnitude is also affected by observation time. 

As can be seen in Table 2, the statistical properties of the time smoothed SCF and PSD, 

especially the variance of the time smoothed feature, depend on the observation time. 

Using one of those properties, the effect of observation time is investigated. The real part 

of SCF feature of the signal with background noise ( { ( )}x cre S kα
+ ) is used for this analysis.  

The Figure 24 below shows the { ( )}x cre S kα
+  of a 2-FSK modulated signal with real 

world noise for each observation times. The red square denotes the mean of the feature 

and the lines denote the standard deviation.  

 

Figure 24. SCF of 2-FSK on different observation time 

Theoretically with AWGN, { ( )}x cre S kα
+  variance should decrease as the observation 

time gets longer. The change in variance should follow /N T , as in Table 2. Figure 25 



 

78 

shows the variance of { ( )}x cre S kα
+  as observation time gets longer with real world noise. 

A numerical description of the variance is described in Table 13 . 

Table 13. Variance ratios of theoretical and experimental { ( )}x cre S kα
+  

T  
(Observation time) 512 2047 8192 32768 131072 524288 2097152 

N 
(FFT resolution) ------------------------------------     512     ------------------------------------ 

  

N / T 1 0.25 0.0625 0.01563 0.00391 0.00098 0.00024 

Ratio of theoretical 
variance 1 0.25 0.0625 0.01563 0.00391 0.00098 0.00024 

Variance ( 810−× ) 
from experiment 

0.3138 0.1353 0.0350 0.0086 0.0020 0.0006 0.0002 

  
Experimental ratio 

of variance 1 0.4312 0.1116 0.0273 0.0064 0.0020 0.0007 

 

The variance of  with real world signal and noise is shown in the 5th row 

of the table. From these values, ratios of the variance are obtained and it shows that 

whereas although the analysis shows that when the observation time is quadrupled, the 

variance should reduce by a factor of 1/4, the experimental ratio shows a factor of 1/2.3 ~ 

1/4.3, which reflects the theoretical ratio. In conclusion, observation time affects the 

variance of SCF feature and as the observation time gets longer, the variance diminishes. 

Numerically, the effect of observation time on the variance of SCF feature value can be 

said to follows the theoretical analysis in [12].  

4.2.3    Difference between AWGN and real world noise 

{ ( )}x cre S kα
+

÷4 ÷4 ÷4 ÷4 ÷4 ÷4 

÷2.3 ÷3.9 ÷4.1 ÷4.3 ÷3.2 ÷2.9 
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The SCF features with real world data did not show the same characteristics that the 

SCF theoretically should show. Specifically, the SCF with real world data exhibit little or 

no performance superiority of the PSD under low SNR environment and did not show 

distinct robustness to noise effects. One of the reasons why it showed no better 

performance under low SNR environment is that background noise of real world is not 

AWGN (which is independent, uncorrelated and Gaussian distributed). That is, real world 

noise can be dependent, correlated and/or not Gaussian distributed. 

Here, the distributions of real world noise and AWGN noise (synthetic) are inspected 

in terms of its noise itself and its SCF.  

First, using raw noise signal itself, Quantile-Quantile Plot (QQ Plot) is made to 

compare a distribution of synthetic AWGN and real world observed noise to normal 

distribution. 

  
(a) AWGN (b) Real world noise 

Figure 25. QQ Plot of AWGN and Real world noise 

Figure 25 (a) is QQ plot of synthetically generated AWGN noise. It follows almost 

perfectly the red straight line, which indicates that the AWGN is normal distributed. 

However, Figure 25 (b), the QQ plot of real world noise, exhibits departures from the red 
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straight line (fitted line) in the tails. Thus, the real noise can be said not to be normal 

distributed. Rather, it is estimated from the Figure 25 (b) that it has long tailed 

distribution, because the middle of the data tends to be mild S-like shape pattern and first 

few points and last few points show departures from fitted straight line. To be specific, 

the QQ plot of the real world noise has increasing departures of first few points from the 

straight line below the line and also increasing departures of last few points from the 

straight line above the line, which indicates that the distribution has long tails [45]. 

  
(a) AWGN (b) Real world noise 

Figure 26. SCF Distribution of AWGN and Real world noise 

The effect of this non-AWGN noise on the SCF is investigated by looking at the 

distribution of SCF under real world noise and versus under AWGN noise by plotting the 

SCF feature distribution as a histogram. Theoretically, if the noise was AWGN, the 

squared magnitude of the SCF  ( ) under AWGN noise is expected to be chi-

squared (see Table 2).  Therefore, if  is not chi-distributed this implies that the 

real world noise is not Gaussian distributed. 

2| ( ) |cS kα

2| ( ) |cS kα
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4.3 Summary 

Path losses measurements under SCF were obtained from several locations and 

compared with that of the PSD to see effects of noise caused by shadowing and multipath 

on the path loss exponent and feature variance. In terms of the path loss exponent, the 

SCF exhibited unclear robustness to noise effects over the PSD. However, in terms of 

variance, the SCF exhibited better robustness than the PSD. Outperformance of SCF over 

PSD under low SNR environments was not identified with real world modulated signal 

and back ground noise. The SCF features showed almost same performance in terms of 

SNR, which means that at almost same SNR level, the SCF and PSD feature disappeared 

into the noise floor. Also, even though observation time was supposed to make SCF 

outperform under low SNR environment with lowering the SNR level of starting point of 

feature floor, it didn’t work as it was expected. Rather, observation time lowered all the 

feature values, not only features of noise but also features of signal. Statistics of SCF 

features were identified in terms of observation time and resulted in exhibiting similar 

feature shown by theoretical approach. Lastly, one of the reason why SCF didn’t work as 

it was expected because the real world noise turned out to be different than AWGN.
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V.  Conclusions and Recommendations 

5.1 Overview 

This research has identified cyclostationary features of digitally modulated signals 

through empirical measurements using features of the spectral correlation function. This 

chapter summarizes the objectives and conclusions, discusses contributions to the field of 

study, and proposes future works. 

5.2 Conclusions 

5.2.1 Path loss of SCF 

To identify and characterize cyclostationary features of modulated signals under 

channel noise and path loss, the magnitude of the SCF features were obtained from many 

locations and compared to those from the PSD.  The path loss exponent and variances of 

the SCF features were investigated. It was found that, from the path loss exponents, that it 

is inconclusive whether the SCF features are more robust to noise effects than the PSD 

features. However, from the feature variances, it was found that the SCF does tend to be 

more robust to noise effect, especially multipath, because it has smaller variance than the 

PSD features. 

5.2.2 SNR performance 

To determine the difference in performance between the SCF over the PSD under a 

low SNR environment with real world signals, the SCF / PSD features were measured 

under varying SNR levels with different observation times. It was found that, under real 

world noise, SCF didn’t show any outperformance under low SNR environment over 
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PSD, and additionally observation also didn’t improve the outperformance of SCF over 

PSD under low SNR environments. 

5.2.3 Effects of Observation time on the SCF statistics 

To observe the effect of observation time on the SCF statistics, variance of real part 

of SCF feature of the signal with real world background noise ( ) was 

investigated and compared to theoretical variance. It was found that the variance from 

real world experiments exhibited similar feature ratio shown by the theoretical approach 

in respect of observation time.  

5.2.4 Difference between real world noise and AWGN 

Because no distinct performance superiority of the SCF features over the PSD feature 

was found in this work, the difference between real world noise and AWGN was 

investigated. It was found that the real world noise does not follow a Gaussian 

distribution as the AWGN does. In addition, the statistics of the SCF feature under real 

world noise was investigated and it was found that there exists a discrepancy between 

these and those under AWGN. 

5.3 Contributions 

Through this work, we identified cyclostationary characteristics with real world 

signal under real world noise and examined the performance of SCF under real world 

noise. In addition, this work is expected to establish grounds for choosing signal 

detection method. Based on the results, CFD does not appear to be better than energy 

detection, because outperformance of the SCF was not proven with real world signal and 

{ ( )}x cre S kα
+
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the CFD requires more information and more computations. And by showing AWGN is 

different from real world noise, importance of experimenting with real world noise is 

emphasized. 

5.4 Future Work 

Since we have not seen distinct improvements of SCF performance, changes in 

parameters used in this work would give more distinct features of the SCF. Finer 

frequency resolution is expected to distribute noise components over more frequency 

bins, which would make SCF feature more distinct. Therefore, experimenting and 

examining SCF performance with larger FFT resolution is suggested 
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Appendix A : Simulink model 

 
(a) Overall Simulink Test Bed 

 
(b) SCF Analyzer 

Figure 27. Simulink block sets 

The Simulink blocks in Figure 27 above describe how the data flows are analyzed. 

Figure 27(a) is an overall model of Simulink. A block at the left is USRP2 receiver which 

masks a real USRP2 device and transmits samples in a frame of 358 samples in complex 

value to SCF Analyzer. Through the USRP2 receiver block, center frequency, gain, 

decimation factor and output data type are controlled. 

Figure 27(b) is detailed blocks of SCF analyzer. Received samples go through the 

hamming window, and then its instant SCF is calculated using Equation (9). The instant 



 

86 

SCF is analyzed both at particular frequency value, set to center frequency of signal, 

which is for SCF and at particular alpha value set to 0, which is for PSD. 

The SCF values coming from the instant SCF are transferred to Time smoothing 

block which takes n sets of instantaneous SCF values and computes the mean of the n 

sets to get time-smoothed SCF values, which is characterized as a time smoothing degree, 

 in Equation (13). The Time smoothing block ouputs the time smoothed SCF 

values, plotting and recording them simultaneously.  

 

 

 

  

/t T∆
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Appendix B : Different computational approaches of SCF 

  
(a) FFT based SCF with time stepped 

smoothing : Real 2-FSK Signal 
(b) FFT based SCF with time stepped 

smoothing : Real BPSK Signal 

  
(c) FFT based SCF with time stepped 
smoothing : Synthetic BPSK Signal 

(d) FFT based SCF with time windowed 
smoothing : Real 2-FSK Signal 

  
(e) FFT based SCF with time windowed 

smoothing : Real BPSK Signal 
(f) FFT based SCF with time windowed 

smoothing : Synthetic BPSK Signal 
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(g) CAF based SCF with time windowed 

smoothing : Real 2-FSK Signal 
(h) CAF based SCF with time windowed 

smoothing : Real BPSK Signal 

 

 

(i) CAF based SCF with time windowed 
smoothing : Synthetic BPSK Signal 

 

 

Figure 28. SCFs of real 2-FSK, BPSK, and synthetic BPSK using different 

computational approaches. 
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